Andriy Bilichak, research scientist, Agriculture and Agri-Food Canada

Follow @ABilichak on X (formerly Twitter).
Follow @ABilichak on X (formerly Twitter).

Andriy Bilichak is a research scientist and cereal biotechnology program lead at Agriculture Agri-Food Canada (AAFC)’s Morden Research and Development Centre (RDC). Bilichak completed his PhD in plant biotechnology at the University of Lethbridge and his postdoctoral fellowship at the Lethbridge RDC.

He was raised in Ukraine and now lives in Winkler, MB, with his wife Nina, who is currently on maternity leave with their baby girl, their son Mark, and his mother.

Where did you work before the Morden RDC?

After my postdoc at the Lethbridge RDC, I worked on a collaborative project with Dow AgroSciences, now Corteva, developing methods for non-transgenic gene editing in wheat. After that, I worked for a startup biotech company where I looked into different genotypes of high-THC and high-CBD lines of cannabis and how to improve pathogen resistance. Then I eventually began my position at the Morden RDC.

What got you interested in this area of work?

I’ve been working on gene editing from the beginning. My PhD was in plant transformation/biotechnology, so it was a logical next step for me to move into gene editing. I enjoy working with like-minded people and thinking and living in science and working towards new discoveries.

Tell us a bit about what you’re working on at the Morden RDC.

My program at the Morden RDC focuses on gene editing and functional genomics, which is the characterization of novel genes. We are trying to identify genes and their role in pathogen response or abiotic stress, for example. The original program was focused on spring wheat, but we’ve added winter wheat and plan to add barley as well.

Since we work on biotech and transformation, the major part of our program is gene editing. We use CRISPR/Cas9 gene editing tools to dissect the contribution of different genes, either in pathogen response like leaf rust or abiotic stress. We also collaborate extensively with other groups that look into other traits like pre-harvest sprouting, for example.

The overall vision for the program is to adopt gene editing for targeted modification in elite Canadian cultivars. We are trying to discover genes that are involved in tissue culture response in wheat, as we want to apply this knowledge to introduce gene editing into elite Canadian cultivars.

The goal would be, for example, if the breeder comes to us and says, “I have this great variety with all these nice agronomic qualities, but it lacks this one. Can you edit or modify this trait for me through genetics/gene editing?” we would be able to quickly do that. The transformation protocol usually takes four months from the time we put the embryo in tissue culture until the time we regenerate the seedling, and it takes another four or so months for the plant to grow. So, let’s say we can regenerate a particular mutation or edit the target gene within a year. This improves line and delivery to the breeder.

In terms of peptides work, the Application of antimicrobial peptides to increase cereal crops resistance to fungal pathogens project was funded by Manitoba Crop Alliance and Western Grains Research Foundation. Through this research, our lab student screened a library of 20 peptides that were selected from literature that had indications of potential antifungal properties that were never tested against leaf rust.

She found some peptides had much stronger antifungal activity compared to others. We then took those peptides and checked the growth curve to try to find out the best concentration for them. Then, when we sprayed those peptides on the leaf surface before infection with leaf rust, we discovered we could suppress the first infection on the susceptible cultivars by just foliar application of those peptides.

We also discovered endogenous wheat-encoded novel peptides that could potentially be used as a fungicide. We are currently working toward engineering these peptides in the wheat genome through gene editing applications. In this way, wheat expressing the anti-fungal peptides in leaves can potentially become more resistant to rust infection. Eventually, these edited non-transgenic lines can be tested in the field for pathogen resistance.

What can you say about the value of farmers providing funding and support to your organization?

We highly appreciate funding from farmers that allows us to do discovery work and adoption of new biotechnology tools for wheat improvement. Most of the work we do is upstream science that eventually can find its application in the farmer’s fields.

Biotechnology tools become very important in adapting wheat genetics to better cope with climate change and unpredictable weather conditions during the growing season. The gene-edited crops become widely accepted worldwide and through funding of biotechnology programs like ours, Canadian farmers can remain competitive on the international markets through growing of the improved cultivars generated using novel breeding tools.   

How does that farmer funding and support directly benefit farmers?

Although we work in upstream science, in every project we apply for we indicate how that work will benefit farmers in the long term and how we can transition it from the lab into the field. We collaborate extensively with other groups (like breeders) on the transition into the field.

In terms of gene editing, we focus on traits that are important to farmers like increased yields or reduced pesticide applications. We are thinking about how to reduce fungicide applications, for example, by looking into alternative means to control pathogens (like peptides). Every research project is centred around the objective of benefitting farmers and agriculture.

How do you spend your time outside of work?

I enjoy sports. I like playing soccer, especially with my son because he is really into soccer. I used to play table tennis and I hope to renew that passion again.

What is the best part about your job?

It’s always interesting for me to go to the lab where we apply biotechnology tools for trait improvement in wheat. Whether we increase the transformation or editing efficiency, whether we have a particular phenotype that we are interested in, and how, in general, gene editing can contribute to the development of new varieties and how it can help in breeding programs. In my opinion, now is a very exciting time to be in plant biotech.

What is your favourite podcast right now?

I enjoy listening to different science podcasts, especially ones that tell odd stories about scientific discoveries and how they came into the world. Two examples are Unsung Science and Disappearing Spoon. They are both very interesting.

Follow @ABilichak on X (formerly Twitter).

The Fence Post: Fall/Winter 2023

Download The Fence Post: Fall/Winter 2023 (pdf)

Table of Contents

 

  • Message from the Chair: Science is science.
  • Message from the CEO: A “New Deal” for Canadian agriculture.
  • What’s new at MCA 
  • Five Questions with Lori-Ann Kaminski
  • Cover: Half a century of tasseling
  • Research & Production
  • Market Development
  • Advocacy
  • MCA Events 
  • Crop Profile Snapshots

Project Update: MCA Development of Long-Type Confection Sunflower Hybrids

Each year, Manitoba Crop Alliance (MCA) releases the Sunflower Variety Performance Trial (VPT) data for both oil and confection sunflowers. In recent years, several confection experimental lines have been tested under the company, MCA. It is reassuring to the future of the sunflower industry in Manitoba that several seed companies continue to invest in the success of this crop.

In 2011, the National Sunflower Association of Canada (NSAC), now amalgamated under MCA, joined the impressive list of organizations that are investing in variety development to bring improved sunflower hybrids to our farmer members. Manitoba has a strikingly short list of available confection hybrids and those that are available are not new genetics. There is also an absence of herbicide-tolerant hybrids with improved disease packages that would benefit confection sunflower farmers.

This is a very exciting time for MCA. As a project that started many years ago with NSAC and has remained a high priority in MCA’s research program, it is very possible that one of these lines will be registered soon, with strong interest from the sunflower industry. MCA is very proud of our breeder’s hard work and commitment to building these three strong experimental hybrids that have strong yields and promising genetic and agronomic packages for Manitoba’s unique growing conditions.

MCA sunflower breeder, Mike Hagen, standing in the first commercial field to test MCA experimental hybrids.

MCA is looking for confection sunflower farmers to conduct strip trials in their 2024 commercial sunflower fields. Interested farmer members can contact Daryl Rex, research trial specialist at MCA, for more information.

MCA’s Elite Sunflower Hybrid Guide

Background

This project supports Manitoba Crop Alliance’s farmer-led hybrid confection sunflower breeding program. Hybrids with herbicide and disease resistance, suitable for Canadian growing conditions will be developed as part of this project.

Project Objectives

  1. Develop elite parent lines, possessing genes for tolerance to sulfonylurea herbicide, rust and downy mildew.
  2. Produce testing seed, test and isolate confection sunflower hybrids for Canadian production that are high yielding, lodging resistance with improved dark, long-type seed. Resistant to sulfonylurea herbicide, rust and downy mildew.

Key findings from the Assessment of New Malting Barley Varieties for Production and Malting Selection in Manitoba final project report

Variety selection is an important consideration for farmers, as not all varieties are created equal. Varieties can differ in days to maturity, plant height, lodging risk, disease ratings, pre-harvest sprouting, grain quality factors and yield. Farmers need to evaluate variety characteristics against the risks and needs of their operation.

Taking time for variety selection is generally a simple consideration within the producer’s control that can maximize operational production and profits. However, complicating factors to consider when selecting a cereal variety is your target market, grain buyer and end-user requirements. For some cereal crops, like malting barley, the end user (maltsters and brewers) and grain buyers require barley to satisfy specific criteria.

In Manitoba, total barley acres (feed plus malting barley) have declined over the last 20 years. Due to a combination of disease concerns, market forces and difficulty to meet malting grade, producers have stayed away from barley in their rotations. According to the Manitoba Agricultural Services Corporation’s annual Seeded Acreage Reports from 2020-2023, total seeded barley acres have steadied, with seeded acres remaining consistent between 365,000 and 400,000 acres. Over the last few years, several new malting barley varieties have been registered for producer use in Canada and there was a need to evaluate the new varieties of malting barley in field scale trials, under Manitoba growing conditions to provide Manitoba farmers with data on how new varieties could fit in their cropping system.

The research project, Assessment of New Malting Barley Varieties for Production and Malting Selection in Manitoba was developed to address this issue. The project was a collaborative effort between the Canadian Malting Barley Technical Centre (CMBTC) and Manitoba Crop Alliance (MCA), with support from Tone Ag Consulting, Canadian Grain Commission – Grain Research Lab and Agriculture and Agri-Food Canada. It was conducted to evaluate new malting barley varieties for agronomics, malt quality and brewing quality. Specific project goals are listed below:

  • Examine the performance of new malting varieties at different growing sites in Manitoba with optimized agronomic practices.
  • Investigate the barley selection rate for malting at harvest and test for barley quality and malting and brewing performance.
  • Identify the growing locations and best agronomic practices for the new malting varieties.

On-farm research trials, through MCA’s Research on the Farm (ROTF) program, were leveraged to complete this project. Producer co-operators, who are MCA members, were involved in trial establishment, treatment implementation and harvest. This research project wouldn’t have been possible without their involvement and participation.

Materials and Methods

Treatments: Two to five malting barley varieties were grown in randomized strip plots on the same field at each trial site, using crop management practices optimized based on site conditions. AAC Synergy was the check variety and was grown at each trial site. Management practices could differ between sites.

Table 1. Varieties seeded by year and the number of participating farms for each project year. Variety lodging and disease resistance data.

 

Year

Resistance*

Variety

2020

2021

2022

Lodging

LS

SBS

RR

NNB

SNB

SB

SR

FHB

AAC Synergy*

X

X

X

G

S

I

I

MR

R

R

MR

I

AAC Connect

X

X

X

G

S

R

MS

I

MR

MR

MR

MR

CDC Fraser

X

X

X

G

R

MR

MS

MR

MR

R

MR

I

CDC Copper

X

X

X

G

I

MR

MR

MR

MR

I

I

MS

AAC Goldman

X

 

 

F

MS

I

S

I

R

I

I

MR

CDC Bow

X

 

 

G

S

I

MS

S

MR

I

MR

I

CDC Churchill

 

X

X

G

MS

MR

MR

MR

I

MR

MS

AAC Prairie

 

X

X

F

S

MR

MR

I

I

MR

I

# of locations

5

5

6

 

 

 

 

 

 

 

 

 

Note: Check variety. LS, loose smut; SB-S, surface-borne smut; RR, root rot; NNB, netted net blotch; SNB, spotted net blotch; SB, spot blotch; SR, stem rust; FHB, Fusarium Head Blight; G, good; F, fair; S, susceptible; MS, moderately susceptible; MR, moderately resistant; R, resistant.
*Resistance data were obtained from Seed Manitoba 2023 Variety Selection and Grower Source Guide.

Variables measured: Measurements were taken throughout the entire malting barley value-chain. These included barley quality and yields, malt processing quality, malt quality and brewing quality. Specific tests are listed below:

  • Barley Quality and Quantity: yield, Deoxynivalenol (DON), protein, germination energy (GE), water sensitivity (WS), thousand kernel weight (TKW), plumpness, stirring number (SN).
  • Malt Processing Quality: malt DON, chit, steep out, acrospire length
  • Malt Quality: malt moisture, friability, fine extract, coarse extract, F/C difference, soluble protein, Kolbach, diastatic power, α-amylase, β-glucan, colour, viscosity, Free Amino Nitrogen (FAN).
  • Brew Quality: overnight apparent extract, overnight alcohol by volume, conversion time, attenuated limit, wort maltotriose, wort maltrose, wort glucose, wort fructose.

Select Results

Figure 1. Top: Mean malting barley yield (bars) and protein data (line) from the 2020-2022 growing seasons. Bottom: Mean malting barley germination (bars) and plumpness data (line) mean values from the 2020-2022 growing seasons.

Figure 2. Top: Mean β-glucan values averaged from 2020-2022 project years and sites. Bottom: Mean DON levels averaged from 2020-2022 project years and sites.

Key Points

  • All new malting barley varieties demonstrated the ability to make malting grade under optimum crop management strategies and a variety of weather conditions. All varieties yielded well, with values ranging between 81-104 bu/ac when averaged across all project years and sites.
  • CDC Copper did not meet GE thresholds of 95 per cent when data was averaged across all sites and project years. CDC Copper did meet GE thresholds at individual site-years.
  • 2021 had the highest malting barley selection rate, with 91 per cent of samples selected. 2022 had the lowest selection rate, with only 62.5 per cent of samples selected.
  • No significant differences in DON levels were found between varieties when averaged across all project years and sites (Figure 2).
  • No significant differences in yield were found between varieties when data was averaged across all project years and sites. Although, yield differences were found at individual trial sites.
  • CDC Copper and AAC Goldman were both found to have water sensitivity values above desirable levels (data not shown). Water sensitivity indicates the percentage of kernels that will “drown” if over-steeped in the malting process.
  • No significant differences were found between varieties for malt processing and quality parameters, such β-glucan (Figure 2.)
  • Variety did not impact the brewing process or beer quality, with no significant differences found in beer quality indicators when data was averaged across sites and project year (data not shown).

More detailed data on sites and growing seasons can be found in the full project report. More information on individual sites and the MCA’s ROTF program can be found here. Use the annual Seed Manitoba Variety Selection and Grower Source Guide when selecting varieties. Finally, consult grain buyers to determine if there are opportunities to market malting varieties.

Funding for this project was from CAP Ag action Manitoba and MCA. This document is a synopsis of the key results and findings from the Assessment of New Malting Barley Varieties for Production and Malting Selection in Manitoba full project report, assembled by the CMBTC.

CMBTC study reveals malting barley lines that pack a punch

Nov. 2, 2023 (Winnipeg, MB) – According to a recent study by the Canadian Malting Barley Technical Centre (CMBTC), in collaboration with Manitoba Crop Alliance (MCA), new Canadian malting barley varieties can be grown successfully in Manitoba.

With comparable yields and quality to the check variety, AAC Synergy, new varieties like AAC Connect, CDC Fraser, CDC Copper, CDC Churchill and AAC Prairie are the next generation of high quality malt varieties for producers.

“The study showed that these new varieties offer good agronomics and the high end-use quality traits that are the hallmark of Canadian malting barley,” says Peter Watts, Managing Director at the CMBTC.

In the past, producers in Manitoba struggled with diseases like fusarium head blight in malting barley. Thanks to new varieties that boast improved disease packages, along with better fungicide products and improved management practices, fusarium has not been a significant issue in recent years.

Producers growing malting barley varieties have the option of both malting and feed markets. With a malt barley variety, farmers gain an additional 2.5 million tonne market that they could not access with feed varieties. As well, malt barley generally offers a premium of around $1 per bushel or more.

“Manitoba is one of the best barley producing regions in the world,” says Pam de Rocquigny, CEO of MCA. “This success can be attributed to climate and geography, and our advanced farming practices.”

Barley is a good cereals crop option, as it provides many benefits when included in crop rotations. Barley can be planted early in the growing season and is both competitive and high yielding. Furthermore, including barley in crop rotations can provide flexibility during harvest, as it matures early, allowing harvest to be spread out between crop types. “In combination, these attributes make barley a great option for farmers,” says de Rocquigny.

More details on the study can be viewed here.

A number of companies in Manitoba source malting barley to supply the domestic and international market including CMBTC members Cargill, Richardson, Viterra, Malteurop and Boortmalt, as well as other malting and grain companies in the province.

-30-

For more information:

Peter Watts
Managing Director
CMBTC
Phone: 204-983-1981
Email: pwatts@cmbtc.com

About the CMBTC: 
Founded in 2000, the CMBTC is a national, independent, member-based, non-profit association that combines technical services, market development, support for the Canadian barley value chain, customer relations and advocacy for Canada’s barley industry in a model that maximizes the opportunity to grow Canada’s markets for barley and malt and to create value.

About Manitoba Crop Alliance:
Manitoba Crop Alliance is a non-profit organization established Aug. 1, 2020, representing over 7,700 farmer members. Manitoba Crop Alliance puts their farmer members first and strives to continuously improve the competitiveness and profitability of all crops represented by the organization by focusing on four main areas: research, agronomy, market access and development, and communications. It is through investment in these key areas that Manitoba Crop Alliance can ensure wheat, barley, corn, sunflower and flax are sustainable production choices for Manitoba farmers. For more information, visit mbcropalliance.ca.

Alankrita Goswami, assistant professor, University of Manitoba

Follow @alankrita10 on X (formerly Twitter).
Follow @alankrita10 on X (formerly Twitter).

Alankrita Goswami is an assistant professor in the Department of Agricultural Economics and Agribusiness at the University of Manitoba (U of M). She holds a master’s in rural management, an engineering degree in biotechnology and a PhD in agricultural and applied economics from the University of Georgia. Goswami lives in Winnipeg and works at the U of M Fort Garry campus.

Where did you work before the U of M?

I was working as a PhD student for four years at the University of Georgia in the United States, and then I came to Canada to work at the U of M.

What got you interested in this area of work?

Economics always interested me. I was doing my engineering degree in biotechnology back in India and in my third year I wanted to be in a workspace where I could somehow contribute to the community. There is a tradition of teaching in my family, both my mother and grandmother are teachers and many of my aunts are teachers.

With an original interest in contributing to the rural community in India, I went for an MBA with a specialization in rural management. It was a very structured program where I had three internship components and got to live and work in different villages.

This shifted my areas of focus from biotech to rural management, and then I started as a pre-doc at the International Water Management Institute-TATA Policy program in India. This got me into agricultural economics as I began looking into irrigation and how it contributes to the ag economy back in India. Then the transition was complete – I began my PhD after that.

Tell us a bit about what you’re working on at the U of M.

In terms of teaching, last semester I taught the agricultural marketing course and this semester I am teaching applied econometrics.

My PhD dissertation chapters were on U.S. agricultural futures markets. My research was mostly geared towards looking at futures markets as a risk management tool for farmers and their effectiveness, especially during anomalies such as what we call non-convergence in the markets. This is when the futures markets are not aligning with the cash markets and dissecting what the possible reason(s) could be.

Futures markets, by design, incorporate not just current supply-related information in prices, but also related to future supplies. In a current project, I am looking at the interconnectedness of markets such as Canadian canola and U.S. soybean oil in the context of anticipation of future supply shocks.

We are studying the transmission of the impacts of expectations of future supply shocks from one market to the other. This will help us understand how these markets are interconnected with each other through the market expectations channel. By conducting such research exercises we intend to distill information on what future supply disruptions mean in context of farmers’ risk management strategies involving futures markets. We also intend to extend this work to include impact of anticipation of future supply disruptions in livestock markets.

Another area I’ve started into is microstructure of agricultural futures markets. At the microstructure level of agricultural markets, we aim to study the traits of the market at a higher time resolution (such as nanoseconds). Understanding market activity at such a micro level can be key to distilling information on aggregate trading behaviour of ag-market participants. Such information can be of utility to users of ag futures, such as farmers, ag businesses, etc. By studying micro-level details of ag-futures markets, I will aim to translate learnings from this work into information of practical utility for the users through a series of technical bulletins.

What can you say about the value of farmers providing funding and support to your organization?

Such funding is of great help to researchers like me who want to contribute to the agricultural community through our work. It provides the opportunity to leverage resources to study issues plaguing the agrarian landscape and come up with solutions to such issues.

How does that farmer funding and support directly benefit farmers?

The extension-centric work in the coming months will be very important. Technical bulletins aimed at the farming community for example, be it the work on looking at anticipations of supply shocks on ag markets or be it this very aspect of looking at the market at a very micro level, I want to translate the information generated from my work into practical utility for farmers.

 How do you spend your time outside of work?

I have always been a voracious reader. I like running and I am hoping to get back into painting this winter. I like to go back to a memory, think of something and paint it. 

What is the best part about your job?

I love research. I like to inspect things and dissect social issues that might be impacting the agricultural economy, and I like engaging with farming communities. Agricultural policy also interests me and my job is a mix of everything I love, including teaching.

What is your favourite food or meal to cook?

I love Italian food. My mother is a very good cook and she would always be preparing it in so much detail, and when you watch a person prepare food with that much love and attention to detail, it gives you the feeling they are creating something important. She really got me hooked on Italian food.

Follow @alankrita10 on X (formerly Twitter).

Flax Diseases: A 2023 Overview

Pasmo is the primary disease of concern in flax in Manitoba and has a regular seat at the table. Severity ranges from year to year and depends on how early symptoms start to show, but it can have significant effects on yield.

The fungus is both residue- and seed-borne, so best management practices include crop rotation, using clean seed, seeding early and fungicide use, which relies heavily on ideal timing. Keeping fields weed-free is another management practice that also benefits yields via disease prevention. Keeping inter-rows clean enables drying winds to pass through the crop easily and deter fungi or bacteria from setting, but also gets rid of other disease hosts that could enable infection of the crop.

Manitoba Crop Alliance, in partnership with SaskFlax, performs an annual flax disease survey on representative acres in Manitoba. It was uncharacteristically dry in Manitoba in 2023, which led industry members to believe disease pressure would likely be quite low across most crops and mundane disease surveys were to follow.

Pasmo and Aster Yellows were the main diseases of interests this year, but it isn’t yet known how they impacted yield. Pasmo ranged in incidence in-field from 0 – 42 per cent, with severity being as high as 75 per cent in the hardest-hit flax crops. Some flax crops were fortunate to have zero incidence of the disease, most likely due to thinner stands and drier conditions during the season.

Pasmo-infected flax stalk.

Aster Yellows were not significant, but in fields that were affected, it was easy to spot the damage and yield will have been impacted in diseased patches. This is a very random disease, infecting plants that have been fed on by aster leafhoppers that are specifically infected by the aster yellow phytoplasma. Aster yellows affect many different crops, with canola being the most economically significant in Manitoba. Aster leafhoppers are sucking insects that transmit aster yellow phytoplasma directly into the phloem of a healthy flax plant, thereby infecting that plant. Damage is evident in misshapen or unproductive bolls.

Flax aster yellows.

In preparation for the 2024 flax crop, farmers will want to follow some key tips for disease prevention:

  • Use clean seed
  • Diversify crop rotation
  • Use seed treatments
  • Keep fields weed-free

For more information on growing flax on the Prairies, see Flax Production Resources on our website.

Corn Facts: Drought and Harvest 2023

Drought conditions seriously threatened the 2023 grain corn crop in Manitoba. From planting until mid-September, many local fields remained depleted of adequate moisture to support good corn growth and development. As harvest occurs, it is easy to see where the drought impacted yields the most and where crops were graced with timely rains and have succeeded in yielding well.

The following are some facts that help tell the story of 2023 and why some fields were affected more than others:

  • Nodal root development and functionality is reliant on soil moisture. At a shallow depth of 0.75 inches, if soil moisture is not available, the roots cannot properly establish, extract soil water or nutrients, or support upright growth of the corn plant.
  • Corn leaves roll and appear pineapple- or onion-like in response to heat and drought. This decreases the surface area exposed to sunlight and reduces transpiration. Unfortunately, it also reduces photosynthetic activity in the plant, which impacts both maturity and yield.
  • Kernel rows per ear have been said to be determined by V6. Number of rows is determined more by genetics than by environment.
  • Kernels per row are determined from about V7 to a week prior to silking. This development is vulnerable to environmental stresses.

Figure 1. Corn water demand by growth stage.
Credit: Golden Harvest Seeds.

  • Drought stress has a major impact during the V13 to silking (R1) stages of corn development. Water demand is at its peak during this time, so drought and heat stress negatively impact reproduction. 
  • Silks initiate elongation from the kernels around seven days prior to silking. Drought stress can slow elongation, delaying silk emergence or even causing failure of silks to emerge from the husk. Successful emergence of silks is then threatened by moisture and heat stress, which may desiccate silks and make them unviable to pollen shed.
  • Adversely, drought stress speeds up pollen shed. Silk emergence and pollen shed may not sync, which means pollination potential is not met.
  • Water demand remains high during the remainder of the reproductive stages and is required for proper grain development and fill.
  • Drought stress can affect a corn plant’s ability to fill grain properly. As the plant begins to shut down and senesce, it is moving all its sugars and reserves to the grain to fill to its maximum. This process may be cut off by environmental factors, commonly including a severe frost.
  • Prolonged environmental stress will lead to premature physiological maturity. The lack of moisture tells the plant to go into survival mode and fill grain with its remaining energy and reserves (mentioned above). This enables the plant to shut down from the ground up and eventually reach R6 (physiological maturity). The grain begins to dry down from this point on.
  • Stalk diseases may be present, regardless of drought conditions during the growing season. Harvest affected fields first to avoid heavy winds and lodging losses.

Gibberella stalk rot on corn stalk.
Credit: Pioneer.

  • Ear moulds may be present, regardless of drought conditions during the growing season. Harvest affected fields first to avoid spread of disease on cobs and quality concerns.

Fusarium Ear Mould.

REFERENCES:

The value and importance of seed testing

If you are planning on saving seed for next year’s crop, seed testing should be considered, as weather conditions from the year the seed was grown, such as precipitation and heat, affect seed quality. Seed testing in the fall can provide growers with useful information that can save them both time and money – allowing them to plan for next year’s growing season with greater certainty.

Typically, seed tests evaluate variables such as germination, thousand kernel weight, vigour and seed-borne diseases. Understanding these variables is important when making seeding management decisions, as seeds with poor germination and vigour or those that contain seed diseases can negatively impact crop establishment, uniformity and health. This will ultimately affect yield.

Information collected from seed tests is also integral to achieving your desired plant population, as thousand kernel weight should be used to determine optimal seeding rates. Additionally, understanding seed germination and vigour can give you a better gauge of expected seed survival and how the seed will perform in the spring.

Germination tests evaluate the percentage of seeds likely to develop or germinate under optimal moisture, light and temperature conditions. Vigour tests are similar but provide information regarding the ability for seeds to produce normal seedings in suboptimal conditions. Cold stress tests are often used to determine this, although there are multiple vigour testing protocols used by labs. Vigour testing is important, as seed vigour usually drops before the seeds ability to germinate does. More information about calculating seeding rates can be found here.

It’s important to note that long periods of storage can affect seed quality. For example, both germination and vigour levels can decrease during winter storage. Therefore, secondary seed testing in early spring may also be necessary. More information about seed testing and seed test interpretation can be found here.

The following labs conduct seed testing:

 

Stephen Crittenden, research scientist, Agriculture and Agri-Food Canada

Follow @Steve_Crittende on X (formerly Twitter).
Follow @Steve_Crittende on X (formerly Twitter).

Stephen Crittenden is a research scientist in soil health and nutrient management, as well as lead of the Soil, Water, and Crop Production Science team, at Agriculture and Agri-Food Canada’s (AAFC) Brandon Research and Development Centre (RDC). He grew up in Collingwood, ON, and has worked in several countries, gaining a unique understanding of agricultural practices around the world.

Crittenden completed his master’s at the University of Guelph and his post-doctoral work at Cornell University in New York State. He spent time working in Rome and France before completing his PhD at Wageningen University in the Netherlands, where he worked on tillage systems and soil quality.

Crittenden now calls Brandon home, where he lives with his wife and two kids.

What is the best part about your job?

I take being a public servant seriously. Whether it’s communicating with media, commodity groups or farmers, or trying to produce science-based information, it’s incredibly gratifying. That is where I see my role, trying to produce science-based information that will benefit Canadian farmers.

What got you interested in this area of work?

Soil health is a topic that came up over and over from farmers in Manitoba. People wanted to know what soil health information is important and what is relevant for their farm, how they can measure indicators themselves or, if working with a commercial lab, what indicators would be most relevant.

I really got interested in focusing on soil health here in Manitoba because that’s what I kept hearing was important to farmers.

Tell us a bit about what you’re working on at the Brandon RDC.

I’m a scientist, but I’m also lead of the Soil, Water, and Crop Production team. A big part of my role is facilitating the work of the team as a whole. We have hydrology and agrometeorology, we have some hydrological modelers, soil crop modeling, agronomy and economics.

We have a number of technicians working and running trials, taking samples and collecting data in the field, and we have technical staff in the labs working on plant and soil nutrient analysis, enabling us to track nutrients in all of these disciplines.

As a scientist, my role is to ask those fundamental questions that are relevant to Canadian farmers and to try to answer them in a science-based way. This could be through writing funding proposals, data analysis or working on reports or manuscripts.

In a project funded by Manitoba Crop Alliance (Manitoba Corn Growers Association prior to the amalgamation) and Manitoba Pulse and Soybean Growers, we looked at the utility of soil health indicators for yield and protein in corn, soybeans and canola. We are currently working on the analysis, but the tried-and-true indicators (spring soil nitrate tests, soil organic matter or phosphate tests) are still proving to be quite useful to differentiate between management systems and correlate relatively well with yield and protein.

What can you say about the value of farmers providing funding and support to your organization?

It is pivotal. I heard from farmers that soil health was one of the priorities they felt they wanted to better understand, which has directed the focus of my work. Working with the commodity groups gives us confirmation that the questions we are asking and what we are trying to accomplish is beneficial for farmers.

How does that farmer funding and support directly benefit farmers?

Soil health can provide a good foundation, literally and figuratively, for good crop performance. If a farmer is going to invest in soil testing, the work we are doing can help you pick which soil health indicators are relevant for your crop yield and protein.

An old adage that used to hang on a professor’s door at the University of Guelph said, “Soil test, don’t guess.” You can get a lot of information relatively easily with a soil test or two.

How do you spend your time outside of work?

Chasing after my two kids!

What gets you excited about work?

One thing I will mention is social media. I love reading all the posts about planting or harvest progress, current issues or other concerns relating to my work – from farmers and commodity groups to ag media. It’s not just about me trying to share what I’m doing, it’s very much about learning what else is going on in the industry and, indeed, trying to focus my work on what would be relevant for farmers. I have found it to be a beneficial tool.

What are you excited about for the future of agriculture?

Trying to provide updated and useful information farmers can base their decisions on. One new method we are working on is called soil spectroscopy. It’s infrared spectroscopy: you basically shine infrared light on soil and can get a lot of information about carbon, texture and salinity. We are trying to expand the number of properties we can predict with spectroscopy.

All our work is with the aim of trying to better our soil testing methods and regimes, and the information we provide to farmers. In a nutshell, that’s what gets me excited about the future – updating the fertility aspect of it, developing new indicators or understanding indicators that are out there, or trying to find new methods to do soil testing.

Follow @Steve_Crittende on X (formerly Twitter).

Top