

MAXIMIZING SPRING WHEAT PRODUCTIVITY: GRAIN NITROGEN, GRAIN PROTEIN AND NITROGEN USE

Amy Mangin¹, Anita Brûlé-Babel¹, Don Flaten¹, Jochum Wiersma², Yvonne Lawley¹

KEY POINTS

- Split nitrogen (N)

 application increased
 grain protein content
 compared to N applied
 entirely at planting.
- To reduce risk of low N uptake post-flowering due to dry conditions, farmers may consider management practices that promote early season N uptake, but they should be mindful of the risk of N loss associated with applying high rates of N fertilizer as urea prior to or at planting.
- In the black soil zone of Manitoba, a larger portion of N was taken up post-flowering compared to other dryland spring wheat areas of the Canadian Prairies.

¹ University of Manitoba, MB, Canada; ² Northwest Research and Outreach Center, MN. United States

BACKGROUND

- Large amounts of N fertilizer are required to meet the milling market protein standards in spring wheat.
- To maximize N uptake and utilization, it is important to understand the patterns of crop N uptake and N use in high-yielding cultivars.
- ▶ The objective of this research was to study how agronomic management practices influence grain N, grain protein and N use in spring wheat, as well as the influence of N uptake and remobilization patterns on these traits.

TERMS TO KNOW

Grain nitrogen use efficiency: the amount of N available to the crop that is used to produce grain N. Grain N use efficiency is the product of nitrogen uptake efficiency (per cent of N available to the crop from the soil and fertilizer that was taken up by the plant) and nitrogen utilization efficiency (per cent of N taken up by the plant that is used for grain N).

Nitrogen remobilization: the movement of N from vegetative tissue to the developing grain to support grain N production during the post-flowering period. Measured by the difference between N content in vegetative parts of the plant at flowering compared to at maturity.

Nitrogen remobilization efficiency: a measure of the amount of N that has been remobilized from vegetative tissue to the developing grain during the post-flowering period, relative to the total amount of N that was in the vegetative tissue at flowering. This represents the ability of the plant to "re-use" N from vegetative parts of the plant.

MATERIALS AND METHODS

- Field experiments were carried out in Carman and Manitou, MB, in 2018 and 2019.
- Evaluated three spring wheat cultivars, five N management strategies and the application of a plant growth regulator (PGR) (Table 1).

Cultivar			
	Wheat Class [†]	Lodging Rating	
AAC Brandon	CWRS	VG	
AAC Cameron	CWRS	G	
Prosper	CNHR	G	
N Management			
	Total N Rate	App. Timing	N Source
Check	0		
Reduced Rate	70 lb N acre ⁻¹	Seeding	Urea
Standard	140 lb N acre-1	Seeding	Urea
ESN Blend	100 + 40 lb N acre ⁻¹	Seeding	ESN + Urea
Split App.	70 + 70 lb N acre-1	Seeding + Flag Leaf	Urea + SuperU™
PGR			
	Product	App. Timing	Rate
Untreated			
Treated	Manipulator™	Stem Elongation [§]	0.7 acre-1

[†]Canadian wheat classification. CWRS: Canadian Western Red Spring, CNHR: Canadian Northern Hard Red.

Table 1. List of treatments included in split-split plot experiment with a main plot of cultivar, sub-plot of nitrogen (N) management and sub-sub plot of the application of the plant growth regulator (PGR) Manipulator™ (chlormequat chloride).

[§] Zadoks growth stage 31, first node detectable and one cm above tillering node.

MAXIMIZING SPRING WHEAT PRODUCTIVITY: GRAIN NITROGEN. GRAIN PROTEIN AND NITROGEN USE

RESULTS

- Split N application significantly increased grain protein content and post-flowering N uptake, but only when late-season precipitation occurred (Figure 1, Figure 2).
- When high rates of N were applied (standard, ESN blend or split application), only 60 per cent of the N available to the crop was used for grain N production (Figure 3).
- 80 per cent of leaf tissue N and 70 per cent of stem tissue N that had accumulated by flowering was remobilized to the grain during grain fill.
- 21-36 per cent of total growing season N was taken up after flowering, but was highly dependent on environmental conditions.

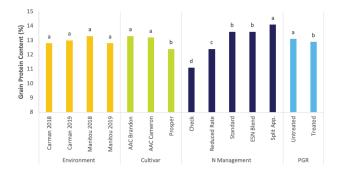


Figure 1: Mean grain protein content across environments, cultivars, N management strategies (Check = 0 lb N/ac, Reduced rate = 70 lb N/ac urea, Standard = 140 lb N/ac urea, ESN blend = 100 lb N/ac ESN with 40 lb N/ac urea, Split app = 70 lb N/ac urea with 70 lb N/ac SuperU[™]) and application of the PGR chlormequat chloride (Manipulator[™]). Means with the same letter are not significantly different.

Figure 2: N uptake after flowering across site years, as influenced by nitrogen management (Check = 0 lb N/ac, Reduced rate = 70 lb N/ac urea, Standard = 140 lb N/ac urea, ESN blend = 100 lb N/ac ESN with 40 lb N/ac urea, Split app = 70 lb N/ac urea with 70 lb N/ac SuperU™). Within site years, means with the same letter are not significantly different. (Note: dry conditions were present during this study. Only the Manitou site in 2018 received consistent precipitation during the grain fill period).

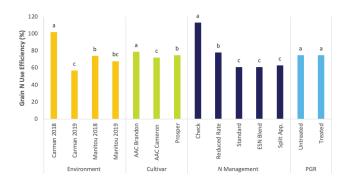


Figure 3: Mean grain N use efficiency for environments, cultivars, N management strategies (Check = 0 lb N/ac, Reduced rate = 70 lb N/ac urea, Standard = 140 lb N/ac urea, ESN blend = 100 lb N/ac ESN with 40 lb N/ac urea, Split app = 70 lb N/ac urea with 70 lb N/ac SuperU[™]) and application of the PGR chlormequat chloride (Manipulator[™]). Means with the same letter are not significantly different.

LEARN MORE

This project also studied yield and lodging risk. For more information, view our factsheet titled "Maximizing spring wheat productivity: Yield, yield components and lodging risk."

This research has been published in a peer-reviewed journal, available here:

Mangin, A., A. Brûlé-Babel, D. Flaten, J. Wiersma, Y. Lawley, et al. 2022. Maximizing spring wheat productivity in the eastern Canadian Prairies II. grain nitrogen, grain protein and nitrogen use. Agron. J. doi: 10.1002/AGJ2.21080. Available online: https://acsess.onlinelibrary.wiley.com/doi/abs/10.1002/agj2.21080

FUNDING ACKNOWLEDGMENT This research was funded by Manitoba Crop Alliance.

CONNECT WITH US

mbcropalliance.ca hello@mbcropalliance.ca P: 204.745.6661

