Call for Tender: Group 2 Herbicide-Resistant Confection Sunflower Hybrid

Manitoba Crop Alliance (MCA) is pleased to invite tenders for non-exclusive license to produce in Canada the Group 2 herbicide-resistant confection sunflower hybrids EX 359239 and EX 359306, produced from the only farmer-funded hybrid confection sunflower breeding program in Canada.

Tender application forms, which must be submitted separately for each hybrid of interest, can be found here: 

EX 359239 and EX 359306 are under review with the Canadian Food Inspection Agency – registration pending.

MCA reserves the right to reject any or all tenders and to negotiate the terms of agreement with any proponent.

For more information, or requests for samples of the above lines, please contact Katherine Stanley, Research Program Manager – Special Crops with MCA, at 204-898-4122 or katherine@mbcropalliance.ca.

Please forward tender submissions by April 26, 2024 to Katherine Stanley, Research Program Manager – Special Crops, at katherine@mbcropalliance.ca.

Seed samples to be provided upon request.

Aida Kebede, research scientist, Agriculture and Agri-Food Canada

Aida Kebede

Aida Kebede, a research scientist at Agriculture and Agri-Food Canada’s (AAFC) Ottawa Research and Development Centre (RDC), is focused on corn germplasm development and genetic studies. She was raised in Ethiopia and received M.Sc. and B.Sc. degrees in plant breeding and plant sciences from Haramaya University, before completing her PhD in plant breeding from the University of Hohenheim in Stuttgart, Germany. She now lives in the Ottawa-Gatineau metropolitan area.

Where did you work before AAFC?

Prior to coming to Canada, I worked at the International Maize and Wheat Improvement Center, also known by its Spanish acronym, CIMMYT. As a PhD student, I spent five years conducting research on improving breeding methods for corn drought tolerance and supporting the establishment of a double-haploid breeding program. I was part of the team that brought the in vivo double haploid line production technology from the University of Hohenheim, Germany, to CIMMYT, Mexico.

After that I worked as a post-doctoral fellow with Lana Reid (former corn breeder) and Linda Harris in the corn breeding program of the Ottawa RDC from 2013 to 2016 and afterwards as a PRP-research scientist at the Morden RDC under the supervision of Curt McCartney from 2017 to 2019. At Morden, I worked on finding molecular markers for disease resistance breeding to oat rusts.

What got you interested in this area of work?

A renowned plant geneticist from Ethiopia, Melaku Worede, who is also a good friend of my father, inspired me to study plant breeding for my postgraduate studies. Since I did my PhD thesis research in corn breeding, I could say corn grew on me.

Tell us a bit about what you’re working on at AAFC’s Ottawa RDC.

My day-to-day activities for a given growing season include designing field trial experiments and nurseries, overseeing planting, recording germination and seedling vigour, followed by observing plant growth and eliminating lines that do not fit the set criteria. In the summer, pollination is a collective effort for my technicians, summer students and myself. We work seven days a week until mid-August.

Then in September we go through our nurseries for a second round of selection and eliminate lines with undesirable traits such as tillering or overall plant stand. Next, we (my technicians and myself) harvest nurseries, isolation blocks and yield trials, and then harvest seed gets processed and the data analyzed in order to do the selection before the new season starts in January.

Around seven years ago, Lana Reid, plant physiologist, and Malcolm Morrison, plant phenomisist, at the Ottawa RDC started making crosses and tested a new method of cold tolerance screening and selection. In this method, crosses and progenies were germinated in cold temperatures (13°C day / 7°C night) in a growth chamber and those which germinate within 21 days were transplanted to the field and selected based on additional attributes to pass to the next generation. This method of selection granted a five-day earlier germination advantage over the commercial check hybrids when tested here in Ottawa. I took over the advancement of the breeding population for cold tolerance in 2021 and continued until the end of the Canadian Agriculture Partnership (CAP) project in 2023.

There is a new project starting this year under the Sustainable CAP stream where the cold-tolerant breeding populations will be tested for cold tolerance under field conditions here in Ontario and Manitoba. This will be in collaboration with Yvonne Lawley from the University of Manitoba.

My role as a breeder is to continue advancing the germplasm in the breeding pipeline with selection for best yield performance and early spring cold tolerance. Promising inbred lines will be released in the coming three to four years, and breeding companies could make use of those inbred lines for making commercial hybrids.

What is the best part about your job?

The best part about my job would be that our research outputs have direct practical application. The inbred lines we develop are taken up by private companies that will turn them into hybrid varieties for use by corn growers.

In addition, the multi-disciplinary nature of our work gives us the opportunity to interact with different national and international organizations, universities and industry groups who dedicate their efforts to the sustainability and productivity of the corn industry in Canada.

What can you say about the value of farmers providing funding and support to your organization?

I would say it is the golden key for maintaining continuity of our research work. Germplasm development is not a short-term undertaking. You need at least nine or more years to develop a variety that a corn grower can use in their field. The support we get from farmers ensures that we succeed.

How does that farmer funding and support directly benefit farmers?

It gives farmers the arena for their ideas to become reality and their voices to be heard, plus the opportunity to guide future research directions. At the end of the day, they are the direct users of the technology and germplasm we develop.

How do you spend your time outside of work?

I love gardening. I have a community garden lot near my home where I grow vegetables and herbs. I like playing basketball and badminton as well.

How do you celebrate agriculture?

Attending the Corn and Apple Festival in Morden, MB, used to be one of my favorite events when I was living there. I really enjoyed the farm machinery parades, buying stuff from the local vendors with homemade products and the free, cooked sweet corn they serve to everyone. I haven’t found a similar event in Ontario yet, but I have been to a maze inside a corn field, which was a lot of fun.

Who or what inspires you?

People with positive thinking attitudes. I am inspired by those who focus on the solutions rather than the problems.

What is your favourite food or meal to cook?

Sweet corn. It only takes five minutes to cook in boiling water, and tastes delicious.

Meet Manitoba Crop Alliance’s 2023-24 post-secondary bursary recipients

MCA_2023-24 Bursary Recipients Graphic_Twitter

Manitoba Crop Alliance (MCA) is proud to support agriculture’s next generation. MCA’s bursary program is designed to assist with the financial needs of students pursuing education in a field that will benefit the agriculture sector.

Six post-secondary students from Manitoba have been awarded with MCA 2023-24 bursaries valued at $2,000 each. The 2023-24 bursary recipients are Emma Harms from Mather, Rhett Grieve from Virden, Ashlyn Whetter from Alexander, Brendan Friesen from Blumenfeld, Nathan Krahn from Rivers, and Cadence Krahn from Carman.

“Year after year, I am impressed with the curiosity and passion for agriculture displayed by our bursary recipients,” says MCA Chair Robert Misko. “These qualities will serve them well as they begin their careers, and I look forward to seeing how their generation moves our industry forward.”

Bursary applicants needed to meet the following criteria:

  • Have completed their first or second year of post-secondary education at the college or university level (diploma or degree) and are enrolled full-time for the 2023-24 school year in an agricultural program within the province of Manitoba.
  • Have achieved a minimum cumulative grade point average (GPA) of 2.0.
  • Have an interest in wheat (spring or winter), corn, barley, flax or sunflower crops, or agriculture in general, as demonstrated in a brief, one-page letter.\
  • Are from a farm that is a member in good standing with MCA
  • Have not previously been awarded an MCA bursary.

An independent selection committee was contracted to evaluate the applicants based on their connection to or interest in agriculture, explanation of why they decided to enrol in an agriculture-related post-secondary program, how they hope to benefit the agriculture industry once they have graduated and are in the workforce, and their academics and writing skills.

This year, the selection committee included Mallorie Lewarne, grow team advisor with Federated Co-operatives Limited; Anne Kirk, cereal crop specialist with Manitoba Agriculture; and Haider Abbas, applied research specialist at Manitoba Agriculture.

Lewarne provides technical agronomy support to local co-ops in Manitoba. She holds a B.Sc. in agriculture and an M.Sc. in plant science from the University of Manitoba and is a member of the Professional Agrologists Institute of Manitoba. Prior to her current role, she worked for MCA as an agronomy extension specialist.

With Manitoba Agriculture, Kirk focuses on cereal crop extension and variety trials. She holds a B.Sc. in agriculture and a master’s in plant science from the University of Manitoba. She is also a Certified Crop Advisor and a member of the Manitoba Institute of Agrologists.

Abbas was born and raised on a family farm and holds a B.Sc. in agricultural engineering and an M.Sc. in biosystems engineering from the University of Manitoba. He is currently based at the Manitoba Crop Diversification Centre in Carberry, MB, where he contributes to advancing agricultural research and innovation.

Thank you to the selection committee for evaluating the bursary applications and congratulations to the 2023-24 bursary recipients!

Meet the MCA 2023-24 bursary recipients

Corn Establishment in Dry Soil Conditions

“Corn roots will not grow into dry soils.” – Dr. Joe Lauer, professor of plant and agroecosystems sciences, University of Wisconsin-Madison (retired)

When Manitoba experiences a dry cycle, a major concern is the ability of our crops to endure very dry and crusting soils. Spring drought is particularly concerning for crop germination and emergence. Without moisture, germination simply will not occur. With limited moisture, germination may begin and become halted if/when moisture runs out, resulting in an unproductive seed(ling).

According to Joel Ransom, North Dakota State University small grains & corn extension agronomist, “For most soils, 0.5 inches of rain (sandy soils require slightly less) is needed in order for moisture to move to a two-inch depth (the seed zone) in dry soils. Poor seed-soil contact can restrict the corn seed from extracting enough moisture from the soil to germinate. Crop residues that touch the seed can similarly impede the movement of water to the seed. Occasionally, fertilizers placed with the seed inhibit germination due to their salt effect being more pronounced in dry soils1.”

Of course, soil moisture is not just required for germination. It is required for all vegetative and reproductive growth. Nodal root development is occurring as the growing seedling reaches V1 staging and this requires ample moisture in the top two inches of soil. This new root development will be the primary means by which the plant acquires water and nutrients by the V3 stage1, so successful nodal roots are critical for further development. If soil is to remain dry around the crown (where nodal roots develop, about 0.75 inches below soil surface) for extended periods during early vegetative growth, these nodal roots will not develop. As corn plants grow larger, they become too heavy without the support of this root system and will flop over. This is where the terms floppy or rootless corn syndrome come from and these have frequently been found in areas of higher compaction or shallow seeding in recent years but will be a common symptom of dry growing seasons.

Figure 1: First set of nodal roots developing on a V1 Corn Seedling. Photo: Dr. Bob Neilsen, Purdue University.

Weather conditions in the entire month of May are impossible to predict. It is extremely rare to have so little soil moisture that the crop is unable to germinate or that the crop runs out of moisture during early development. It is rare that this should occur and to the best of our knowledge, it has not happened in Manitoba on a large scale.

Should a crop failure occur in spring due to dry conditions and young seedlings die off via dehydration, a replanting scenario may be considered. Stand reduction does have to be very significant to justify replanting corn simply because of the delayed planting date. Manitoba Agricultural Services Corporation (MASC) historical data shows that there is an estimated yield loss of 5% per week delay in spring planting.

Figure 2: Average relative yield reported to MASC during each sowing week for the selected crops grown in Manitoba for the period of 2010-2019.

Replanting corn is a very expensive decision and most often is not economical unless stand loss is over 16,000 plants per acre. Even in that scenario, the farmer may still be looking at too significant a loss to make it worthwhile. Replanting grain corn should only ever be considered after careful economic analysis of costs against any potential gain2.

For more information on growing corn on the Prairies, see Corn Production Resources on our website.

References

  1. Ransom, Joel. “Dry Soils and Poor Corn Emergence.” NDSU Crop & Pest Report, NDSU, 1 June 2017, https://www.ndsu.edu/agriculture/ag-hub/ag-topics/crop-production/crop-pest-report.
  2. Manitoba Agriculture, Corn Seed Bed Preparation. https://www.manitoba.ca/agriculture/crops/crop-management/grain-corn/corn-seed-bed-preparation.html 

In the field and abroad: sharing the Canadian wheat story with global customers 

In November 2023, Cereals Canada released the 2023 New Wheat Crop Report and shortly after led four trade and technical missions to 17 countries to showcase the quality of Canadian wheat to customers and buyers.

The annual trade and technical missions visit key global markets for Canadian wheat to share reports on the quality and functionality of the year’s wheat crop and include information on market supply and demand. Experts from the value chain – such as commissioners from the Canadian Grain Commission, exporters and farmers – participate in these missions.

As part of the seminars during these missions, farmer participants were asked to present on key farming practices and highlight the practices they follow to grow wheat while minimizing environmental impacts.

“Each market wants to understand more about Canadian farming practices,” says Dean Dias, CEO at Cereals Canada. “Having farmer representatives speak on behalf of Canadian growers about their farming practices is critical to informing customers about sustainability.”

Grain farmer and MCA crop committee delegate Korey Peters was a farmer representative on the Asia trade and technical mission, visiting customers in Japan, Indonesia, the Philippines and China from Nov. 24 to Dec. 9.

“The experience was awesome and very eye opening,” says Peters. In each seminar, Peters used photos and videos to talk about the crop types he grows on his family farm and shared information about how the 2023 growing season went.

Photo Gallery

After his presentations, he was often asked questions related to soil fertility, managing wheat diseases and how he looks after the environment.

“Customers were very curious to hear firsthand what we do, how we grow things, and what works and what doesn’t,” he says. “I talked a lot about crop rotation and science-based solutions, and how we work with professionals like certified agronomists, for example, to help us.”

At all the seminars, Peters says customers were engaged and seemed eager to speak directly with a farmer. “They wanted to know about everything I did, but they also wanted to know about the grain and quality,” he says. “They were asking about breadcrumb structure, air pockets and how the bread was going to look.”

He adds the level of scientific detail blew his mind. “I just grow wheat, but it was interesting to hear these types of questions and discussions. It also reinforced to me the importance of having members from the whole value chain at these missions to answer all their questions and to build trust.”

Something that stood out to Peters was the relationships. “These companies want to put a face to the names of the people in the value chain. Some were on a first-name basis, or even exchanging hugs because they’ve met many times before. This showed me how important it is to our customers to have that personal connection.”

For Cereals Canada, the trade and technical missions are a way to build and maintain strong relationships, which is vital to growing the international demand for Canadian wheat. For Peters, it was a great experience, and he says he would go again in a heartbeat.

“It became very clear to me that Canada’s wheat is second to none. Every place we visited agreed that Canadian wheat is phenomenal, which makes me very proud of what we grow.”

For more information about the New Wheat Crop Report or the trade and technical missions, visit cerealscanada.ca.

Lorne Grieger, director of technical sales, Prairie Agricultural Machinery Institute

Follow @PAMI_Machinery on X (formerly Twitter).
Follow @PAMI_Machinery on X (formerly Twitter).

Say hello to Lorne Grieger, director of technical sales at the Prairie Agricultural Machinery Institute (PAMI).

Grieger studied bioresource engineering (formerly, agricultural engineering) at the University of Manitoba and has worked with PAMI in both project management and ag research related positions. He grew up on a farm in Swan River where his family still farms, and he and his wife live near Birds Hill, close to his wife’s family. They have two daughters.

Where did you work before PAMI?

I’ve worked for PAMI on two separate occasions. I previously worked for a pharmaceutical company. When I look at what we’re doing for the livestock sector, biosecurity principles are very similar in terms of managing disease or daily livestock operations. I’ve used a lot of background from my time there and applied it to the work we do with the livestock sector at PAMI.

I also worked in a consulting firm for a few years. From that experience, the machinery design side is very applicable to some of the work we do now for industry clients. As an organization, we work in two areas: the industry side, where we help companies do innovation testing, design and engineering work prototyping, and the other side is public research.

What got you interested in this area of work?

I’ve always liked equipment – it’s intriguing. I love working with tractors and big iron, but also the technology piece that goes with it. You have these large pieces of steel with control and guidance, the technology is remarkable. When you think it hasn’t changed or can’t get any better, somebody comes out with a new concept or idea. It’s ever changing, ever evolving and ever improving.

Tell us a bit about what you’re working on at PAMI.

In my current role, I oversee proposals. I collaborate with grower groups to understand their needs and see how we can address those needs through PAMI’s expertise and experience. We look at implementation of technologies or understanding technology features, and how to use it on farm.

Some of our work that Manitoba Crop Alliance recently funded was looking at seed damage from large air seeders, for example. If you understand what that seed moisture is and the germination impact, you can adjust your seeding rate accordingly to get the stand you’re looking for. After all, when you’re investing millions of dollars in equipment, you want to understand the best fit or how to use it effectively for your current operation, because equipment is not one size fits all.

On the grain drying side, a lot of the work we’ve done is looking at current practices and measuring or understanding what farmers’ baselines are in order to make decisions, or find ways to increase efficiency and reduce costs. This could refer to new technology as well, understanding grain drying aspects both in the bin as well as dedicated drying systems. By using different pieces of equipment or looking at different practices as a whole, we are looking at the best ways to manage risk or ways to increase profitability.

If we can understand some of those details, we can provide both simple and more complex ways of working with equipment or modifying current processes to allow farmers to be more efficient and more profitable down the road.

What can you say about the value of farmers providing funding and support to your organization?

Producer funding is critical for the work we do. We don’t want to just do research – we want to do work that’s applicable to people that are feeding their families and looking to pass down a farm to the next generation. If you put money behind a project, that means it’s important to you, and as a result, it’s important to us. We want to work in those areas.

Having open dialogue with grower groups helps us understand what is important to members, so that, as we look at the future of our organization, we can invest in the right resources, people and expertise to be able to answer the questions that grower groups are asking.

How does that farmer funding and support directly benefit farmers?  

We aren’t telling people how to do their craft or run their business. We want to provide information that can be used to make good decisions. That could be in terms of operational or equipment investments, to modifications or investments on a capital side as well. It is a little bit of de-risking when you look at adopting a new practice, what exactly does this mean? If we can answer that on an individual basis so everybody can learn and understand it, it lowers the risk for all involved.

How do you spend your time outside of work?

Camping, and being outside as much as possible. The Duck Mountains are where my heart is. I just love being up there, as well as Whiteshell and further on into northwest Ontario. It’s a gorgeous country that we live in.

What is the best part about your job?

The best part of my job is constant variety and working with new ideas and new concepts. If we do a certain practice, what does that mean for farmers? Does that make a difference in terms of their operations, revenue and sustainability on a farm level? That’s what I really enjoy, working out the applicability down to the farm gate difference, including how economics, different practices and equipment choices can be affected as a result of the work we do.

What are you excited about for the future of agriculture?

The future of agriculture is ever changing. We always find ways as an industry to innovate, problem solve and rise above challenges. Just when you think you’ve seen it all, something else comes along, and we find ways to adapt and to be successful as a result. Moving forward, seeing the next generation come online along with new technologies and advancements is remarkable.

Follow @PAMI_Machinery on X (formerly Twitter).

Research on the Farm – Wheat Seeding Rate Trial Summary

The Manitoba Crop Alliance (MCA) Research on the Farm (ROTF) program conducts scientific research with farmer members, using replicated strip trials on commercial fields. Farmer co-operators use their own equipment and management practices to conduct this research. Research projects are developed to investigate current and pressing agronomic questions and provide site-specific answers. More information about the ROTF program and all trial results can be found here.

As wheat genetics have improved, testing current seeding rate practices for new spring wheat varieties was necessary to understand if targeted plant stands are being optimized for yield and grain quality. The purpose of the spring wheat seeding rate trial was to quantify the agronomic and economic impacts of reducing and increasing farmers’ target plant stands compared to their normal target plant stand. This was done by increasing and decreasing seeding rates. Seeding rates ranged from 20 – 45 lbs/ac higher and lower than the farmers’ normal seeding rate (Table 1). This trial has been conducted for four growing seasons (2020 – 2023) and has 26 site-years of data. Trial sites covered numerous soil types, management practices and climatic conditions, as sites were located across agro-Manitoba.

Figure 1. Summary of spring wheat yield by seeding rate for all trial sites from 2020 – 2023. Note: Letters indicate significant differences between treatments.

Over the past four growing seasons, significant differences in plant-stand density were observed at 50 per cent of trial sites. In all cases, where a significant difference in plant-stand density was observed, the highest seeding rate had the highest plant-stand density. Although significant differences in plant-stand density were observed between treatments at 50 per cent of sites, there were only three sites where significant yield differences were observed. In each instance where a significant yield difference was observed, the low seeding rate treatment always out yielded the high seeding rate treatment (Figure 1).

Results from this trial indicate that producers have a good idea of the optimal seeding rate for their farm. Our results also suggest that during dry conditions, increasing your seeding rate does not necessarily lead to increased yield. Although, it should be noted that this data does not directly measure other variables that are impacted by seeding rates, such as crop uniformity and days to maturity. No statistical analyses were conducted on grain quality parameters.

Table 1. Economic analysis of all trial sites from 2020-2023.

Note: Seed costs are based on Manitoba Agriculture 2023 Cost of Production Guidelines ($34/ac or $17/bu). Wheat prices based on a No. 1 grade, hard red spring wheat price of $9.52/bu. Net profit calculated based on seeding costs only.

In terms of profitability, in this ROTF trial, it typically did not pencil out economically to use the high seeding rate, as there were no significant yield increases when the high seeding rate was used.

Tone Ag Consulting carries out MCA’s ROTF trials in all six of our crop-types. They assist the farmer with plot planting and harvesting, then capture key information throughout the growing season. This includes soil sampling in the spring, followed by growth stage notes and precipitation data during the growing season.

Seeding Flax to Provide the Best Start

Typically, flax is seeded from May 1st to June 20th. It may be seeded the last out of all the crops as the bolls and seeds can stand and ripen in the fall without shelling while other crops like canola are being harvested. Prolonged exposure to fall weather, though, will reduce the quality of the harvested seed and make it ineligible for a food grade market. MASC data has shown that flax has good yield potential in the last week of May (Table 1), but yields decline in some areas as the calendar turns to June. MASC seeding deadline is June 20th for all of Manitoba.

Table 2: Relative Stubble Yield Response (2011 – 2020). Source: Manitoba Agricultural Services Corporation.

Yield response data from MASC, recorded from 2011 – 2020 (10 year results), shows that flax responds best when seeded following a pea crop, with the next best response after corn (Table 2). It generally has the poorest yield response when seeded following any oilseed crop, for obvious reasons. Research has shown that flax performs poorly specifically after canola and/or mustard, and not only because of disease issues. The poorer performance of flax on canola stubble is attributed to mycorrhizae fungi which do not associate strongly with canola and decrease in presence during the canola crop’s growing season. When flax is grown on canola stubble, the mycorrhizae populations are lower, which leads to poorer early  season nutrient update, especially phosphorus, a relatively immobile nutrient in the soil that is crucial to early flax development.

Flax does well after cereals or corn. It also performs well after legume crops and alfalfa, but Rhizoctonia disease may be a problem. Flax does not do well after potatoes due to the loose seedbed and potentially Rhizoctonia in this rotation as well. According to MASC, the most common crop stubble that flax is seeded into is spring wheat in Manitoba and very few acres are seeded into pea stubble, so that flax-on-pea yield data in Table 2 could be seen as skewed. Crop rotation is extremely important when making all cropping decisions, but flax is a particularly sensitive plant to many outside factors and rotation should be paid considerably close attention to. It is recommended to have at least three years between flax crops on a field to control various soil-borne or stubble-borne diseases of flax, such as pasmo.

Table 2: Relative Stubble Yield Response (2011 – 2020). Source: Manitoba Agricultural Services Corporation.

For a successful flax crop, the greatest strategy is to enable the crop to emerge in a uniform and dense plant stand. This helps the crop with weed control throughout the season and allows for consistent physiological maturity down the road.

Tips for a productive flax plant stand:

  • Target ½ to ¾ inch seeding depth to allow crop to emerge quickly
  • Do not overfertilize. Flax does not respond positively to increased rates of fertilizer. Excess nitrogen will cause prolonged maturity and potential lodging issues.
  • Target a higher seeding rate. Flax depends very heavily on adequate stand establishment and plant populations of 40 – 56 plants/ft2. Typical emergence for flax is 50% – 60% of seeding rate. Seeding rates on the high end of the recommended range should be used for ground prone to crusting when seeding late or under heavy weed pressure.
  • Do not seed flax on poorly drained soils or sandy soils because of poor water retention. Medium to heavy-textured soils are preferable. These soils may also crust in the spring, which can inhibit flax emergence.

For more information on growing flax on the Prairies, see Flax Production Resources on our website.

James Tucker, research scientist, Agriculture and Agri-Food Canada

James-Tucker_crop

James Tucker is a research scientist in barley genomics at Agriculture and Agri-Food Canada’s (AAFC) Brandon Research and Development Centre (RDC). He completed a bachelor of science in chemistry and biology at the University of Winnipeg before spending a year in entomology at the University of Manitoba (U of M). He then moved to Montreal to do a master’s degree in quantitative genetics at Concordia University. He worked for a while before returning to studies later in his career to complete his PhD in plant science at the U of M. Tucker lives outside of CFB Shilo with his wife. He is the father of two children.

Where did you work before the Brandon RDC?

I started out as a summer student in the ’90s and worked my way up as a research technician in Winnipeg at the Cereal Research Centre before moving to Brandon in 2001. I worked as a biologist and then a barley pathologist, supporting the barley breeding program. In 2018, I was made into a research scientist at the centre. Aside from one summer working for the Canadian Forestry Service, my work experience has all been within AAFC.

What got you interested in this area of work?

Initially, it was employment. I was working in Winnipeg in entomology and molecular genetics as a technician and then took a job as a barley pathologist. I had an interest in genetics for a long time. In genetics there is a lot to work on and there are always new and complicated problems. What really grew on me was the community. Barley is an extremely co-operative research community and it’s been a really positive experience working within that community.

Tell us a bit about your work at the Brandon RDC.

The Developing barley germplasm with improved resistance to Fusarium head blight (FHB) and other biotic stresses for western Canada project is the major driver of my research. This project ran from 2018-23 and was funded under the National Barley Cluster.

I work closely with Ana Badea, a barley breeder here at the Brandon RDC, as well as the other barley breeders in Canada. There are a lot of diseases in barley making it quite complicated. We focus on the diseases that are of major economic concern and cause damage for farmers. This includes Fusarium head blight (FHB), stem rust, spot blotch and other biotic stresses that affect barley production.

In the spring, we work on experiments to get seed from Dr. Badea’s program to collaborators, for example – and receive seed from other institutions around the country and internationally – and set up studies and seeds for our disease nurseries (stem rust, leaf disease and FHB) here at the centre. Plots are grown and infected, followed by record-taking of disease ratings for thousands of plots. A big task in the fall is harvesting the FHB nursery. In barley, there is not a good relationship between the visuals and the toxins like wheat, so we need to harvest a lot more, and by hand. The work is labour intensive, where approximately 10,000 rows are harvested each year. Then during the winter, we are cleaning and processing the seeds, sending them for analyses in order to get all of the information back in time for the breeders to use to make their selections.

What can you say about the value of farmers providing funding and support to your organization?

In my view, a lot of the research I do is funded through farmers and their faith in giving me the funds I need to do the research that matters to them. In the research I do, I always focus on the benefits for farmers, which is very important to me. I really appreciate the funding support.

How does that farmer funding and support directly benefit farmers?

In my research program there are short-term and long-term goals. Some things take longer than others. Breeders have a big job. They have to breed for so many traits, while constantly trying to improve yields, so that farmers can benefit. I work with the breeders to help them select the best lines to advance depending on the trait they are targeting (e.g., resistance). This results in farmers getting new and improved varieties with better disease resistance packages, for example. 

How do you spend your time outside of work?

I do a lot of gardening. I’ve been doing martial arts for most of my life, and I really enjoy being in nature going hiking or walking in the forest and riding ATVs.

How do you celebrate agriculture? 

I have a good-sized garden. I love putting my hands in the soil, smelling the soil and growing things. It’s kind of like my Zen time. It’s pretty exciting that we get to put seeds in the ground and the sun provides the requirements to grow and produce food that we get to eat. I normally grow excess food and tell the neighbours it’s a “you pick” garden, so they can come and take what they like.

What is a good piece of advice you’ve received?

 I’ve had a lot of mentors over the years, and some good advice I received is that research is a slow and steady game of increments over the years. There are really good days where you find something or a new discovery, but it’s slow working and it takes time, especially in FHB research. You have to gain an understanding that things don’t happen quickly and it takes time and resources to do research, but over time, you eventually achieve your goal.

Click here for more information about the Brandon RDC.

MCA-funded research at the 2023 Manitoba Agronomists’ Conference

On Dec. 13 and 14, 2023, Manitoba agronomists met to discuss the latest developments in pest, crop and soil management. This year, the conference theme was “Advanced Technologies: tools or replacements for agronomists?” Much of the research shared at the Manitoba Agronomists’ Conference was funded in part by Manitoba Crop Alliance (MCA).

The following is a summary of the posters shared that featured MCA-funded research:

Soil Fertility

  • Performance of Soybean-based Rotations in Manitoba: Soil P and K
    Ramona Mohr, Yong Min Kim, Mohammad Khakbazan, Debbie McLaren (ret’d), and Byron Irvine (ret’d), Agriculture and Agri-Food Canada

Crop Management

  • Leveraging On-Farm Research to Evaluate New Malting Barley Varieties for Production and Malting Selection in Manitoba
    Li Yueshu, Canadian Malting Barley Technical Centre, Ashley Ammeter, Morgan Cott, Daryl Rex, Andrew Hector, Manitoba Crop Alliance
  • Performance of Soybean-based Rotations in Manitoba: Yield and Quality
    Ramona Mohr, Yong Min Kim, Mohammad Khakbazan, Debbie McLaren (ret’d), Byron Irvine (ret’d), Agriculture and Agri-Food Canada
  • Establishment of Annual Crop-Living Mulch System
    Jessica Frey, Joanne Thiessen Martens, University of Manitoba

Pest Management

  • Performance of Soybean-based Rotations in Manitoba: Root Diseases
    Yong Min Kim, Debbie McLaren (ret’d), Ramona Mohr, Byron Irvine (ret’d), Mohammad Khakbazan, Agriculture and Agri-Food Canada
  • Are Intercropped Cover Crops Compatible with Canola Weed Management on the Canadian Prairies?
    Janelle Gawiak, Yvonne Lawley, University of Manitoba, Maryse Bourgault, University of Saskatchewan, Linda Gorim, University of Alberta
  • Manitoba Survey of Herbicide-resistant Weeds in 2022
    Charles Geddes, Mattea Pittman, Agriculture and Agri-Food Canada, Kim Brown-Livingston, Manitoba Agriculture, Julie Leeson, Agriculture and Agri-Food Canada

During the crop management session, Amy Delaquis also presented her research on Agronomic Management to Maximize Spring Wheat Yield and Protein while Minimizing Lodging Risk. Check out our factsheets that summarize this research:

For a full list of poster presentations and speakers from the 2023 conference, as well as a recording of the 2023 presentations (available February 2024), visit the Manitoba Agronomists’ Conference website.

Thank you to the conference partners – University of Manitoba, Manitoba Agriculture and the Prairie Certified Crop Advisor Board – for hosting an excellent conference!

Top