MCA-commissioned study highlights research capacity challenges in Manitoba

Agricultural research is fundamental to the continued productivity and sustainability of Manitoba farmers and supporting high-quality research is foundational to the mission and vision of Manitoba Crop Alliance (MCA).

The research needs of farmers are unique, accounting for diverse geographic regions and crop types, and constantly evolving in response to consumer demand, climate and other factors. As a result, Manitoba’s research community must be well positioned to meet the current needs of farmers, while also anticipating the challenges they will face in the future.

We recently engaged Backswath Management to execute a study evaluating the existing crop research capacity in Manitoba. Most public and private research institutes contacted in the Backswath survey were interested in collaborating with MCA to meet farmer research objectives, but many cited barriers to initiating or expanding collaboration.

The study identified four main challenges facing research capacity in Manitoba:

Equipment was frequently cited as a limitation to meeting the research needs of Manitoba farmers. Increased demand on existing equipment and the need for new or specialized research equipment were emphasized in several survey responses. Barriers to addressing equipment challenges were often related to funding programs and reduction in funding at research institutions.

Infrastructure and access to land has created challenges for numerous private and public researchers in Manitoba. At public institutions, existing infrastructure is aging and not keeping pace with current demand or technological advancements. Meanwhile, the creation of new infrastructure has been slow, or non-existent. Demand for currently owned land at research stations is high and renting land from farmers can be challenging.

Program funding was strongly correlated to existing limitations of equipment, infrastructure and land access. Many funding programs limit the ability to offset the cost of capital expenses and do not allow expenditures related to ongoing maintenance and repair. Current funding structures were also noted as limiting the capacity to address certain research questions. Many funding programs are limited to a three- to five-year research project. As research questions become more complex, the need to fund longer-term studies is critical to adequately address these challenges. Funding programs have also become increasingly time consuming, placing strain on researchers and their staff to undertake administrative responsibilities, which take up time that could otherwise be spent conducting research.

Human resources are a significant challenge to research capacity. Recruitment and retention, as well as identifying skilled workers, were noted as limitations for both private and public research institutions. Competition from private industry outside the research field and adequate compensation were noted as barriers to addressing human resource related challenges in research.

We will carry out additional in-depth discussions with both private and public partners to determine the next steps to increase research capacity in Manitoba. We recognize the importance of fostering strong relationships between industry and research. By pursuing direct engagement with the Manitoba research community, we hope to improve communication, provide context for Manitoba farmers’ research objectives and identify opportunities to collaborate with new and existing members of Manitoba’s research landscape.

From Prairie to pint: Canada-China Barley Seminar strengthens trade relationship

As member of the Canadian Malting Barley Technical Centre (CMBTC), Manitoba Crop Alliance (MCA) participated in the 2024 Canada-China Barley Seminar in Qingdao, China, from June 19-20. This CMBTC-hosted seminar aimed to strengthen relationships with a key market for Canadian barley by connecting the Canadian barley value chain with Chinese maltsters and brewers.

“The seminar provided a unique platform for the Canadian barley value chain to engage directly with Chinese maltsters and brewers to cover critical aspects of Canadian barley supply and quality, production practices and sustainability,” says CMBTC chair Jon White. “China is a key market for Canadian barley. This event was pivotal in showcasing our superior quality to our end users.”

Farmers, as well as representatives from Canada’s world class barley breeding programs and grain suppliers, represented the Canadian barley value chain at the seminar.

Meetings were held at Tsingtao Brewery and Hyaline Malting Co., with a concurrent conference. Tsingtao Brewery was founded in 1903 and is ranked in the top five global brewers. Hyaline Malting, a former naval air base turned into a malt processing plant, has supplied Tsingtao Brewery with malt since 2005.

MCA director and wheat and barley crop committee delegate Sheila Elder travelled to Qingdao to represent MCA. She joined two other farmers and a representative from Richardson on a panel discussing the sustainability of Canadian grain production.

Elder was asked about Manitoba’s “much wetter” climate compared to the other two Prairie provinces. “Although the last couple of years have not felt so wet, this year is a different story,” she says.

“This led me to talk about how yield is not our only objective when choosing a variety; we need a variety that has resistance to Fusarium and is not as prone to lodging as earlier varieties were. Fortunately, thanks to our world-class breeders, we have great options to choose from.”

On the theme of collaboration, Elder also highlighted some of the resources farmers have access to in Canada to help them make the best management decisions throughout the growing season. These include access to highly trained experts, such as crop pathologists, entomologists, weed specialists, crop specialists and agronomists, as well as commodity organizations like MCA who have agronomists on staff.

The importance of farmer participation in the seminar was evident. Farmers like Elder could address Chinese maltsters and brewers’ specific questions and concerns about barley production, fostering trust and strengthening the relationship between our two countries.

Sheila also talked about how much pride farmers take in growing the best crops possible, as well as the importance of collaboration within the industry.

At one meeting with brewers, glyphosate came up as a concern. White, who in addition to being chair of CMBTC is also a merchandiser with Viterra, addressed this by explaining how malt barley samples are probed and tested at many different stages, reinforcing how well malt barley is tested for glyphosate.

It was evident to Elder that having many parts of the barley value chain represented at the seminar was important for the Chinese maltsters and brewers. “It was quite clear they value building relationships through face-to-face meetings and would like to see those from the value chain more often.”

With China’s doors open to trade with Australia, the seminar arrived at an important moment. Canada’s barley is well known for its high quality, but that quality comes at a premium, partly due to longer shipping distances and related costs when compared with Australia, for example.

“In today’s competitive global market, seizing opportunities to foster trusted and mutually beneficial relationships at home and around the world is crucial” says CMBTC managing director Peter Watts.

“End users are keenly interested in the systems and standards that distinguish Canada’s barley supply, quality and performance. This seminar was tailored to address the evolving needs and interests of international end users, who seek products that will meet their current and future needs, as well as insights into the Canadian system.”

From left to right: Jon White (Viterra), Sheila Elder (farmer, MCA), Roy (Leroy) Newman (farmer, Alberta Grain), Peter Schutz (Richardson), Peter Watts (CMBTC), Aaron Beattie (University of Saskatchewan Crop Development Centre), Hayley Stacey (CMBTC), Yueshu Li (CMBTC), Cody Glenn (farmer, SaskBarley), Jackie Oakes (Cargill), Al Morris (independent grain buyer) and Matt Enns (farmer, SaskBarley).
From left to right: Jon White (Viterra), Sheila Elder (farmer, MCA), Roy (Leroy) Newman (farmer, Alberta Grain), Peter Schutz (Richardson), Peter Watts (CMBTC), Aaron Beattie (University of Saskatchewan Crop Development Centre), Hayley Stacey (CMBTC), Yueshu Li (CMBTC), Cody Glenn (farmer, SaskBarley), Jackie Oakes (Cargill), Al Morris (independent grain buyer) and Matt Enns (farmer, SaskBarley).
Qingdao (home to Tsingtao Brewery) is where the sailing events were held for the 2008 Olympics. This large, red sculpture symbolizes the Olympic flame.
Qingdao (home to Tsingtao Brewery) is where the sailing events were held for the 2008 Olympics. This large, red sculpture symbolizes the Olympic flame.

Japanese delegation visits Manitoba to gain better understanding of Canadian crop production

On June 27, a delegation from Japan’s Ministry of Agriculture, Forestry and Fisheries (MAFF) toured Manitoba Crop Alliance (MCA) director Doug Martin’s farm near East Selkirk, MB. In addition to Martin, MCA was represented during the farm tour by agronomy extension specialist for cereal crops Andrew Hector.

The tour was an excellent learning experience for the Japanese delegation and a great opportunity for MCA to interact directly with representatives from an important market for Manitoba agricultural products.

Members of the Japanese delegation typically communicate with grain buyers or suppliers, who provide them with information about grain quality and production practices, but they don’t often have the chance to interact with farmers. This led them to reach out to Cereals Canada, who then worked with MCA to help facilitate the event. The delegation had a desire to better understand the practices farmers are using firsthand, which is why they valued participating in the farm tour.

During the tour, members of the MAFF group asked specific and pointed questions regarding crop production practices used on the farm. They were also interested in how specific pieces of equipment work, what fungicides are used and at what frequency, and types and timings of fertilizer application. Additionally, there was a strong interest in on-farm grain storage and how the grain is transported to ports.

The MAFF is important in the Japanese market in that they set the contracts and associated terms for wheat importers that the importers then execute. They also control import regulatory tolerances for cereals.

Japan is a longstanding, quality-conscious purchaser of Canadian wheat. According to Cereals Canada, Japan imported an average of 1.62 million tonnes annually from 2018 to 2022, valued at $631 million. Meanwhile, Manitoba-specific data shows Japan is the province’s third-largest wheat export market, with an annual export average of 325,759 tonnes from 2018 to 2022, valued at $127 million.

Photo Gallery

The Impact of Mid-Season Excess Moisture

It is well-known that spring weather in Manitoba is unpredictable. Farmers endure drought conditions one season and excess moisture the next, never knowing for sure what is ahead. These dubious conditions make crop planning particularly difficult because no one knows what extremes of moisture crops may or may not have to grow through that season.

Generally, crops should endure excess moisture fairly well in early summer, when they are actively growing vegetatively, and environmental conditions are usually conducive to evaporation. The growth curve is quite steep during this time, especially in the large-sized crops like corn and sunflower and their water uptake is generous if conditions are good. Flax is not going to be a crop that tolerates “wet feet,” and it will be evident if it is in standing water for extended periods.

Corn

Corn that is past V6 staging has the growing point above ground, so flooding at this stage isn’t quite as detrimental as it would be at earlier stages. Remember that where there is standing water, there is no oxygen exchange and living cells cannot survive without it for very long. Ideally, conditions do not get too hot (crop stress) and evaporation and/or water drainage can happen quickly. Depending on how many times the flooded areas have been flooded this season, this influences the ability of the crop to “bounce back.” Root death is possible in this scenario and warm, dry soils will be required to generate new root growth. New root growth is possible in corn in these situations, but the new growth will extend horizontally, which leads to a few implications with nutrient uptake and plant stability.

In younger plants, V5 or smaller, being waterlogged for four days would be a maximum time span to survive and recover. It is harder to determine what that is for larger plants that are growing much more quickly, especially if there have been multiple heavy precipitation events that have left fields saturated and/or puddled. It is also exceedingly difficult to determine what nitrogen losses may be, and even more so when top-dress applications have occurred recently. At this stage and in the days ahead, it would be very important to keep an eye out for nitrogen deficiency symptoms. Corn nitrogen uptake is about 60 per cent of total uptake from the V8 to silking stages, so losing access to nitrogen via leaching or denitrification could seriously impact yield.

Sunflower

Sunflowers are growing rapidly in July and moving quickly into the reproductive stages. At this time, the crop can be using up to 1/3 inch of water each day. It is hard to believe that with this excessive water use that the crop wouldn’t manage saturated soils very well, but the roots do still need to breathe. Photosynthesis also slows down while stomata remain open in wet conditions, which slows plant development. In flooded conditions, sunflowers may have a tolerance for about three-plus days in an anaerobic environment. During those conditions and following, crop recovery is better with cloudy and cool-warm weather rather than hot and sunny weather.

Sunflowers are also very susceptible to stalk diseases during this vegetative growth, including sclerotinia basal rot. Sclerotinia infections can occur anytime between early vegetative stages through to seed fill and generally need precipitation to spread their spores. It is an important consideration for farmers and agronomists and recommended to know the high risk of disease that the crop carries in wet environments.

Flax

Flax has the lowest tolerance to flooding of the three specified crops. It is a small, shallow-rooted crop that does not adapt well to extreme conditions, nor does it have a need for high amounts of water to grow. If it remains in standing water for longer than three days, flax will become stunted, yellow and there will be a high risk of yield loss.

Flax requires the bulk of its water during flowering and seed fill, at roughly 0.28 inches/day. It is also known that dirty (weedy) flax fields use water much less efficiently than clean flax fields. The one benefit to flax in wet fields is that it is not as susceptible to stem diseases as most other Manitoba oilseeds, therefore wet conditions are not a matter of concern with regards to yield or quality loss due to disease.

Meghan Vankosky, research scientist, Agriculture and Agri-Food Canada

Follow @vanbugsky on X.
Follow @vanbugsky on X.

Meghan Vankosky, a research scientist in field crop entomology with Agriculture and Agri-Food Canada (AAFC), works at the Saskatoon Research and Development Centre (RDC). She holds both bachelor’s and master’s degrees from the University of Alberta and completed her PhD at the University of Windsor. After completing her PhD, Vankosky spent a year in California on a postdoctoral project. She now lives in Saskatoon with her four-year-old standard poodle, Flurry.

Where did you work before AAFC?

Before AAFC, I worked at the University of California at Riverside. I was there one year as a postdoctoral researcher. While there, I collaborated on a release program for a parasitoid to control Asian citrus psyllid, which is an important pest of all kinds of citrus. Asian citrus psyllid, also known as ACP, vectors a disease that kills citrus trees – the disease has no cure and all infected trees eventually die. In California we were trying to slow down the spread of the insect (and the disease) by starting a biological control program.

What got you interested in this area of work?

Well, like many young people, I had no idea that being an entomologist was even a career option. When I started university, I had decided I was going to med school, but realized in my first year that I was not cut out for it.

In my second year I took a selection of courses. One of them was the introduction to entomology and it just went from there. Some fortuitous choices and some good luck and I ended up with an awesome co-mentor for my master’s program, Dr. Lloyd Dosdall, who sadly passed away a few years ago. I learned a lot from him and from other mentors in entomology.

Tell us a bit about what you are working on at AAFC.

Since I came to AAFC in Saskatoon, the biggest project I have been part of (and now co-lead with Jennifer Otani) is the Prairie Pest Monitoring Network (PPMN). Jennifer and I collaborate closely with the provincial entomologists in Manitoba, Saskatchewan and Alberta, and we have funding support from nine different industry groups, including Manitoba Crop Alliance (MCA) and the Agriculture Development Fund.

One of the major activities of this project is to maintain and expand our records of the annual population densities and distribution of key pests of Prairie crops, including bertha armyworm, cabbage seedpod weevil, diamondback moth, grasshoppers, pea leaf weevil, wheat midge and wheat stem sawfly.

These are the major pests we monitor each year. The monitoring data is used to develop the annual risk maps available on the PPMN website. We aim to have the maps ready to share online in December or January, so that we can talk about them at winter outreach events and so that farmers can use them when planning for the next growing season. The maps can be used to estimate insect-related risk to crops going into the next growing season.

Through the PPMN and our current funding, we are also trying to do more lab research to understand better the biology and population dynamics of some of these insects. We are also partnering with Dr. Boyd Mori, University of Alberta, to better understand if there are any risks of resistance development in the insect populations we monitor. Insecticide resistance can affect how we manage insect pests, and we would like to try to add that as a layer to our mapping exercise.

There are a lot of moving parts and pieces to this project, and it is highly collaborative. We have a lot of people who help collect data and share information with us so that we can put the maps together and keep historical records. The historical records are valuable, as we can use them to build models that can help us to predict and understand how insects respond to changing climate. We hope that the PPMN is a helpful tool that farmers and agronomists use to find reliable information about insects in general and about what insects could be a problem in their crops.

What can you say about the value of farmers providing funding and support to your organization?

It gives us an advantage in terms of our ability to do work that is for the public good and that will have a direct benefit to farmers. I think a lot of the work we do at AAFC and in university agriculture programs is all beneficial to agriculture, but knowing that the funds are coming from farmers towards research that aligns with the problems they are facing helps close that loop a little bit faster and bring that information back to farmers.

It is valuable that organizations like MCA have farmer board members as it provides clearer communication in terms of research priorities. I can write my proposals geared to what the research priorities of the organizations are, which are based on what farmers need.

How does that farmer funding and support directly benefit farmers?

A big piece of all the work we are doing with this project through the PPMN is providing information to farmers on a regular basis through our weekly updates and our insect of the week articles, and at the end of every season with insect risk maps. The funding also helps get us, as researchers, to outreach events where we can talk about our research with farmers and agronomists. These conversations not only allow us to share new information but provide us with helpful feedback.

How do you spend your time outside of work?

Doing many different things! I learned all kinds of needle and handicrafts from my grandmothers and my mom growing up, so I do a bit of crocheting and cross stitching and I am learning how to embroider. I took up paint by numbers again during the pandemic, which is something I hadn’t done for years. I like to take my dog to obedience classes and learn how to teach him different things. Also, since the pandemic, I started building Lego again. Now that I am an adult and I have disposable income, my Lego collection is growing and growing. 

How do you celebrate agriculture?

I think by being an entomologist. I grew up on a cattle farm in west central Alberta. I am grateful that I grew up on a farm and had that experience, but I did not want to farm as an adult. I am very grateful that I can give back to agriculture and celebrate it by still working in agriculture by studying insects. I am glad that I can do research that I enjoy and that brings benefits to agriculture.

What gets you most excited about your work?

The insects and the people. The insects are very interesting, and we have a really great team of people here in Saskatoon. The entomology community across Canada is top notch. There are so many great people who work in this field who we collaborate with and learn from. That is what gets me excited about what we are doing.

Follow Meghan (@vanbugsky) on X.

Visit prairiepest.ca to find weekly updates and insect of the week articles during the growing season, and risk maps at the end of the season.

Early Season Sunflower Pest Pressures

As a row crop with low plant populations, sunflower crops need to be monitored and kept pest-free throughout the growing season. Weeds compete intensely and can quickly outnumber a sunflower crop in a matter of days when uncontrolled. Insects and disease attack plants individually and affect both yield and quality of each plant.

Let’s review the importance of taking control of early season sunflower pests in order to maintain the crop’s best potential yield and quality.

WEEDS

  • Pre-plant & pre-emergent herbicides – it is vitally important to give a sunflower crop a strong start and that begins with a clean “workspace”. Allowing sunflowers to germinate and emerge without competition will give the crop the ability to establish ahead of in-crop herbicide applications. There are not a lot of sunflower herbicides – both PRE & POST and herbicide groups are very limited for the crop.
  • Post-emergence – weeds can out-compete and outnumber a sunflower crop quite quickly and easily. Timing of in-crop herbicide applications should be precise in order to maximize control of young and older weeds present. 

INSECTS

  • Cutwormsearly May to mid-June
    • Cutworm larvae are typically active by the time sunflowers emerge in late May. Cutworms of all larval stages will feed on seedling plants. This may involve climbing the plants and feeding on the leaves or chewing on small plant stems, often severing the stem completely and killing the young plant.
  • Sunflower Bud Moth, Suleima helianthana (1st generation) – mid-May to mid-June
    • Adult moth is greyish-brown with a two dark stripes on its forewings. When at rest, it looks like one stripe in the shape of a boomerang across the forewings. Sunflower bud moth can easily be confused for banded sunflower moth, but the latter have a more full, dark triangle across their forewings, when at rest.
    • Adult females deposit eggs in leaf axils, developing buds or on the receptacle of mature sunflower. Larvae cause more damage in this first generation, rather than second generation. Burrowing in stalks weakens young plants and may interfere in water and nutrient movement. Yield losses may actually be realized when larvae burrow into unopened buds, though economic losses are rare. There are no economic thresholds established.
  • Sunflower beetle, Zygogramma exclamationis – June
    • Adult sunflower beetles emerge with sunflower seedlings in late-May to June and feed on plants. They are not usually an economic concern at this time, though there are established thresholds in both early and late crop stages:
      • 1 – 2 adult beetles per seedling at two to six leaf stage
      • 10 – 15 larvae per plant during later months
  • Sunflower Maggot, Strauzia longipennis (adults) – June
    • Emerging in early- to mid-June, adults are active and lay eggs in stem tissue of young sunflower plants. Larvae will feed in the stem pith tissue for most of the growing season.

DISEASES

  • Downy Mildew, Plasmopara halstedii – late May to July
    • Under cool, water-saturated soil conditions, the spores germinate upon contact withsunflower rots, entering the seedlings’ roots and spread throughout the plant. Surviving, infected plants produce white spores on the underside of chlorotic areas on leaves.
    • Infected plants do not elongate into large, “normal” sunflower plants, nor do they produce heads that contribute to yield. 
  • White Mold, Sclerotinia sclerotiorum – late May to physiological maturity
    • AKA: Sclerotinia wilt/ Basal stalk rot
    • Soil-borne sclerotia germinate to form mycelium, which may directly infect growing root tissue of the sunflower. Symptoms are not visible for several weeks when plants are observed to be wilted and weak. Infected plants can occur as individuals, in a row or in a cluster of plants.
    • Sclerotinia head rot is often thought of as the most prevalent and economically important sunflower disease, but Sclerotinia wilt (white mold) is potentially the more significant and yield-robbing stage of Sclerotinia infections.
  • Rust, Puccinia helianthi – late May to physiological maturity
    • Sunflower rust is not the same species that occurs in other crops. The pathogen can overwinter in Northern locations, therefore early epidemics can occur, though this rarely occurs. High local inoculum and wet, warm conditions in early season are required for early-season infections.
    • Infected plants show orange lesions (pycnia), with a yellow halo, on upper surfaces of leaves. Opposite these lesions, on underside of the leaves, aecia form, which look like upside down cups filled with spores. More recognizable is the cinnamon-brown uredial stage, which takes place next and is known as the more economical and quick-spreading stage of the leaf disease.
  • Verticillium Wilt, Verticillium dahliae – late May to physiological maturity
    • The fungus is seed- and soil-borne. The microsclerotia germinate in response to root contact. The root tips are invaded and all parts of the plant become affected. The fungus produces toxins which are translocated throughout the plant, causing the chlorotic and necrotic interveinal areas.
    • Symptoms may appear at the six-leaf stage under severe conditions. Lesions begin on lower leaves and progress slowly up the plant. The vascular system may be discoloured brown, apparent as a ring around the pith in cross-section.

Monika Gorzelak, research scientist, Agriculture and Agri-Food Canada

WEB_headshot-Monika-Gorzelak-winter-deer

Monika Gorzelak is a soil microbial ecologist at Agriculture and Agri-Food Canada’s (AAFC) Lethbridge Research and Development Centre (RDC). Gorzelak completed her undergraduate studies at the University of Guelph in microbiology and her PhD in forestry at the University of British Columbia (UBC). She lives in Lethbridge with her husband and their two daughters, ages two and six.

Where did you work before the Lethbridge RDC?

Before I joined AAFC, I was doing my PhD in forestry at UBC, looking at trees talking to each other. My PhD supervisor, Suzanne Simard, is an inspiration. She recently published a book called “Finding the Mother Tree,” has a popular TED Talk and was recently named one of Time Magazine’s 100 most influential people in the world for 2024.

What got you interested in this area of work?

I’ve always liked the whole microbial world, even though it’s a small sliver of the ecology ecosystem. There are cases where plants help each other – where microbes leverage their relationships with other organisms for their own success and help crops and plants succeed. I’m quite interested in that kind of interspecies and ecological community-based interaction research, and I like to focus on less well understood and slightly understudied concepts in ecology.

Tell us a bit about what you are working on at Lethbridge RDC.

In the Understanding the interactions of N fertilizer technologies, fungicides, and the soil microbiome to optimize sustainable agriculture project funded partially by MCA, we are trying to understand what happens to the beneficial soil microbiome when enhanced efficiency fertilizers (EEFs) are used in cropping rotations.

We are doing that in three different ways. First, leveraging several years of small-plot-scale work by Brian Beres where they evaluated different EEFs in wheat. We sampled their plots and final year of research to compare soil microbiomes and get a grasp of the community composition and diversity of the bacteria and fungi in those soils.

Next, we are going to build on that information in the greenhouse. We are setting up our first greenhouse study to do a closer and more controlled experiment, looking at the impact of EEFs on the soil microbiome.

For the third part of this project, we are going to look at the impact of prior crop on spring wheat in the greenhouse. In summary, this project is looking at how to leverage beneficial soil microbes to help farmers be more productive; answering the question, “Can we do more with less inputs?”

What can you say about the value of farmers providing funding and support to your organization?

I couldn’t do this research without funding from farmers. I am fortunate to have a job that supports me to be able to ask what I think are important questions that are relevant to others. Getting this funding from farmers indicates that they are interested in the work that I am interested in, so it feels more meaningful.

How does that farmer funding and support directly benefit farmers?

The goal, of course, is to create more sustainable agriculture or to create information that farmers can use to make decisions, with the goal of having more sustainable systems at the end of the day.

How do you spend your time outside of work?

I’m a pretty sporty person and I like to be outside when I can. I also love cooking elaborate meals. My favourite thing to cook is always changing, usually whatever is seasonal.

What is the best part about your job?

I really like idea generation and designing experiments. Having an idea and looking at data to see if I’m wrong – because data usually doesn’t lie to you – or if the idea is supported. The whole process is very logical, but it’s also creative at the same time because you must come up with good questions and novel ways to answer those questions. It’s in the design and the uniqueness of experiments where I get excited.

I’ve also loved meeting farmers, especially the direct-to-consumer farmers. I get a lot of my produce locally because I know the folks I’ve worked with and who they are, and I can show up and get a rather large portion of my food locally. That feels awesome.

What are you excited about for the future of agriculture?

I think there are a lot of opportunities to create efficiencies that are going to benefit the environment and the farmer at the same time. Technology has really developed, as well as our understanding about the systems that are needed to help mitigate climate change, for example. There is a lot of opportunity for farmers to contribute, while continuing to produce and make money.

Weed Control Strategies in Flax

Flax is a small, upright plant that does not branch out (tiller) extensively or produce much biomass. It develops a short, branched taproot that will extend up to 1 metre (39 inches) in depth and 30 cm (12 inches) across. As a result of the minimal ground cover that flax provides, it is a poor competitor with weeds that are more aggressive and they can thrive via access to sunshine, moisture and nutrients.

Weeds don’t only affect crop yield, they also contribute to losses via dockage in grain samples and shipments. Removal of weeds also improves quality factors like oil content and iodine levels.

To see best results for weed control in flax and to minimize losses most effectively, removal should occur prior to the crop reaching 6 inches in height. Weeds in the seedling stage are easiest to control and there is a decreased risk to injury of the crop at the early growing stages. Crop injury can also occur in herbicide applications with low water volume and/or in hot conditions.

Since flax is a reasonably weed-intolerant crop, it is best to take a long-term approach for weed control with both cultural and chemical controls, where applicable. In terms of chemical control, timely pre-emergent herbicide applications, preferably with residual control, are ideal to get the flax crop off to a strong start. Some farmers find that seeding the flax crop a little later gives them a window for pre-seed or pre-emergent applications on those hard-to-control weeds. Following emergence, keeping an eye on the crop staging and weed pressure is crucial so that herbicides can be applied at an appropriate time.

Flax has a good selection of herbicides for all application timings. Always refer to Manitoba’s Guide to Field Crop Protection for up to date options, or refer to MCA’s Quick Herbicide Reference Guide.

Important considerations when determining a herbicide program include:

Pre-emergent herbicides give the crop the best chance to thrive as early as germination, and to get ahead of weed populations. Minimizing competition at this very early stage is crucial for the crop.

Post-emergent herbicides are limited to Groups 1, 4 and 6, which is not uncommon for special crops and it is a hurdle when considering weed control, especially in the age of weed resistance. Specific planning needs to occur in previous crops for weed control and with fall-applied or pre-emergent herbicide use.

Pre-and post-harvest herbicides are a valuable resource for long-term weed control planning, in flax and all other crops. This is great opportunity to look at perennial weed populations and target control when they are preparing for seasonal dormancy.

For more information on growing flax on the Prairies, see Flax Production Resources on our website.

Reflecting on a milestone Grains Week

Article provided by Grain Growers of Canada

Grain Growers of Canada’s (GGC) annual Grains Week is a three-day event packed with back-to-back meetings with parliamentarians and decision-makers to advocate for agriculture policy solutions. Over 20 dedicated grain farmers from across Canada converged in Ottawa for a series of strategic meetings, including MCA directors Jonothan Hodson, who also sits on the GGC board of directors, and Sally Parsonage.

The week was filled with substantial discussions with nearly 30 key decision-makers in the agricultural sphere, including MPs, senators and top government officials. Discussions were held with prominent leaders, such as Minister of Finance Chrystia Freeland, Leader of the Official Opposition Pierre Poilievre, Minister of Environment and Climate Change Steven Guilbeault, Minister of Agriculture and Agri-Food Lawrence MacAulay and Minister of Rural Economic Development Gudie Hutchings.

“Events like Grains Week offer farmers a chance to speak directly with parliamentarians and decision-makers about issues we are facing on the farm,” Parsonage says. “We also highlight the continuous progress farmers have made towards a sustainable and productive agriculture sector in Canada.”

Our conversations were focused, productive and centered around advancing 10 key policy recommendations crucial for the sustainable growth of agriculture in Canada.

The week also featured a memorable parliamentary reception the following evening where nearly 50 MPs and senators participated, engaging in robust dialogue and forming grassroot connections with the grain growing community. Minister MacAulay’s opening remarks also set the stage for an engaging evening, which was supported by Beer Canada and Spirits Canada. Their partnership beautifully demonstrated the journey of our grain from the fields to the reception tables, emphasizing how our hard-working growers cultivate the quality of the Canadian products we enjoy.

“Grains Week is important to Manitoba farmers because it is an opportunity for MCA and other GGC member organizations to highlight priorities for our grain farming community,” Hodson says.

“Many face-to-face meetings take place with MPs, senators and their staff, who are important contacts that allow for further dialogue on important policy objectives. As a producer representative, we are there to try and relate what effect policies may have on the producers we represent.”

Such meetings and events remain crucial for maintaining direct engagement with policymakers, ensuring the perspectives and needs of grain farmers are heard and make an impact. The positive feedback from our stakeholders in Ottawa stresses the importance of our continued advocacy and presence on Parliament Hill.

“Maintaining a steady presence in Ottawa is key and will ensure that when new policy or ag-related issues arise, decision-makers will have a direct connection with the producers they are impacting,” Parsonage says.

While Canadian agriculture advocacy efforts gain incredible strength from events like Grains Week, it’s important to note that its success was largely due to the dedicated grain farmers who journeyed to Ottawa. We deeply appreciate their participation, which was essential for the impactful meetings held, underscoring the crucial role they play in shaping our agricultural policies.

Let’s maintain this momentum for Grains Week 2025 and ensure our community remains at the forefront of agricultural innovation and policy development!

Photo Gallery

Afua Mante, assistant professor, University of Manitoba

Afua Mante is an assistant professor of soil physical processes in the Department of Soil Science at the University of Manitoba (UM). She was born and raised in Ghana, where she attained a bachelor’s degree in agricultural engineering and a master’s in water supply and environmental sanitation. In 2011, she moved to Canada as a graduate student at the UM, where she completed an additional master’s degree in mechanical engineering and a PhD in biosystems engineering.

Where did you work before your current role at the UM?

I worked at the Centre for Engineering Professional Practice and Engineering Education in the Price Faculty of Engineering at the UM as a post-doctoral fellow for two years (2018 to 2020) immediately after completing my PhD program. In that role, I was responsible for identifying, through consultation and collaboration with stakeholders, meaningful ways for genuine inclusion of Indigenous knowledges, perspectives and design principles, as well as principles of sustainable development and sustainable design, in engineering curricula. After that, I joined the land remediation group in the Department of Soil Science as a post-doctoral fellow, where I oversaw projects on the restoration of prime agricultural lands disturbed by industrial activities. I stayed in this role until January 2022 and then stepped into my current role in the same department as an assistant professor.

What got you interested in this area of work?

It all started when my uncle made what I had seen in junior high agricultural science textbooks become a reality. Use of agricultural machinery was a dream in my community. My uncle got a small tractor with one plow and one harrow. This set of machinery was “gold.” You could see the pride in my uncle’s face. You can bet he used all his savings on them. No financing opportunities. All he wanted was for the crops to meet the rains at the right time. This investment paid off. He saw an exponential increase in yield – his team was so proud to work with him and it provided my family with security.

More than that, I got the opportunity to see the equipment in action. I was mesmerized watching the whole show. My uncle said to me, with a smile on his face, “we have people who research into how these machines work.” That got me interested in pursuing the agriculture path.

I received opposition to that idea from some of my high school teachers. They had not experienced the magic of agriculture, or they were somewhat disconnected from how we need agriculture. To them and many, agriculture was a way to punish kids at school. It had a negative image. I was lucky to have experienced my uncle’s investment at work. My decision was solidified when I figured out that one of my mentors who had visited my high school to support our education was pursuing agricultural engineering (which I did not know existed at the time) at the Kwame Nkrumah University of Science and Technology. He enlightened me on career opportunities in agriculture and from then on, I never looked back.

Tell us a bit about what you are working on at the UM.

I teach the course “Soils and Landscapes in our Environment” at the undergraduate level, soil physics courses at the undergraduate and graduate levels, and the equity, diversity, inclusion and bias sections of the “Principles of Scientific Research and Communication” course at the graduate level.

I run the soil physics research program. In the program, I supervise both graduate and undergraduate students on various projects. We collaborate with stakeholders to identify opportunities and address challenges to advance the agriculture industry. With our projects, our main goal is to understand the complexity of the soil system and how to subject it to applications and interventions in a sustainable way to allow us to continue to enjoy the ecosystem services it lends to us. Currently, we are looking into a wide range of applications and interventions, including farm traffic systems, extreme moisture events, cropping systems, nutrient management, freezing and thawing processes, brine contamination, pipeline construction, and how they interact with the soil for sustainable crop production and a healthy environment. There is more room to expand our research, considering the complexity of the soil system.

I am currently collaborating with two researchers at the UM on a project, “Building resilient soils with cover crops in Manitoba,” funded through Manitoba Crop Alliance and the Sustainable Canadian Agricultural Partnership (Sustainable CAP). In recent years, we are seeing an increase in the number of farmers in Manitoba who are adopting cover crops to conserve the soil, for nutrient cycling or for improving soil health. In addition to these benefits that are associated with cover crops, we are exploring how cover crops can improve soil strength to support trafficability and reduce the risk of soil compaction and other soil deformation processes. Our focus is not just on the wet condition, but also on the dry condition, as that contributes to the deformation processes of the soil under our climate. This project is an opportunity to present a holistic view on the benefits of cover crops integrated into annual cropping systems by taking into account the agronomic and climatic conditions that prevail in Manitoba.

What can you say about the value of farmers providing funding and support to your organization?

As we know, producing food has many pieces to it. In our province, our climate and our wide range of soils make our challenges unique. To overcome these challenges in our community, we have to recognize that we all have a role to play. But here is the catch: it is one thing knowing you have a role to play and quite another having the resources to support your role.

Farmers’ financial contributions to our research programs make it possible for us as researchers to play our role. We are able to train highly qualified personnel (HQP) for the sector and secure resources we need to address current and emerging challenges in our community. This ongoing farmer support demonstrates a community where we all work together for continued success.

How does that farmer funding and support directly benefit farmers?

As I mentioned earlier, there are several pieces to producing food. When farmers provide the support, they set the priorities. They directly influence the sector. They tell us what their actual challenges are. Many times, what we may perceive as a problem is not seen as such by farmers. Also, how we may define a problem to provide solutions may not align with the reality of management. As key stakeholders, we consult and collaborate with them to create working solutions. Knowledge sharing through the life of a research project and after becomes integral to the research. It promotes accountability as well as (re)evaluation of the outcome. Also, with the plethora of challenges the community faces, we need all hands on deck. When we train HQP, we build the workforce needed to tackle the challenges. All these lead to fostering stronger relationships in the community.

Anything you want to add or any comments to our farmer members?

Farmers are our heroes. It is my hope that we all recognize that. They begin the story of the food on our plates. It is a very lengthy story. We may not always hear the story, but what we can all agree on is the excitement and the sense of renewal we have after treating ourselves to a wonderful meal. Thank you, farmers.

How do you spend your time outside of work?

I serve as the vice-chair of the Canadian Foodgrains Bank board of directors, where I offer my perspectives and leadership on the organization’s mission to end global hunger and shape Canada’s contribution to international aid and development. I also write songs and poems, which is a great outlet for me. The most fun thing I do is when my kids and I make up songs and sing them unending.

What is your favourite TV series right now?

Monk – a series on Netflix. The characters all have their unique strengths that they bring to accurately solving cases. What I have learned is that sometimes the strength of another may be frustrating when we are not used to it. It may be too slow or too detailed for us, and we think it could be easier to quickly jump ahead, but then it doesn’t lead us anywhere. When we begin to create the space to understand one another, we realize that we complement each other. To have an effective collective, we need to understand and accept the individuals within the collective.

What is the best part of your job?

The training of HQP. I have HQP from diverse disciplines. This requires me to be intentional about knowing them as individuals so that I can train the whole person. This leads to my HQP owning their training and accepting the challenge to be more. It is a joy to see such a development in them.

Connect with Afua on LinkedIn.

Top