Learnings from the sixth International Symposium on Fusarium Head Blight

Last month, Canada hosted researchers, industry stakeholders and commodity organizations from across the world for the sixth International Symposium on Fusarium Head Blight (FHB). This conference showcased the latest research from around the world, illustrated the progress made over the last decade in understanding and combating FHB, and highlighted the challenges we still face.

There were four main takeaways from the conference:

  1. Breeding works
  2. Researchers have come a long way in understanding the disease
  3. Canada is a leader in FHB research and training the next generation of FHB scientists
  4. MCA-funded research has a direct impact on combating FHB

Understanding the disease

Fusarium is a complex fungus that can survive on multiple plant species and plant parts. Understanding the species population, mechanism of plant infection, disease spread and plant response is crucial to combating FHB. Conference presentations and posters provided new insights, such as the role of mycotoxin (e.g., deoxynivalenol) in the Fusarium head blight infection, understanding the effectors critical for FHB infection and unraveling plant-microbe interactions. MCA-funded researcher Matthew Bakker was one of the researchers that presented his work in this space.

Matthew Bakker presenting his research at the sixth International Symposium on Fusarium Head Blight.

Breeding and food safety

Canada has an impressive and long-standing expertise in cereal breeding and food safety. This was on full display at the conference, with presentations from breeders, including Curtis Pozniak from the University of Saskatchewan (U of S) and Richard Cuthbert from Agriculture and Agri-Food Canada (AAFC). The moral of the story is that breeding works. Newly released spring wheat and durum varieties have improved FHB resistance ratings, which is important for an integrated disease management plan. MCA is a core-breeding funder and provides resources for this important work to get elite wheat (e.g., AAC Brandon) and barley varieties that carry great agronomic traits along with strong disease-resistance packages into farmers’ hands.

A presentation by Sean Walkowiak also demonstrated the robustness of Canada’s grain handling and monitoring system. Walkowiak presented on the Canadian Grain Commission’s Harvest Sample Program results from past years, showing the extent of FHB impact across the Canadian Prairies, but also highlighted the effectiveness of the safety system in Canada, where everyone works together to deliver safe, healthy cereal ingredients to consumers.  Canadian grain safety programs achieved technical equivalence against the Global Food Safety Initiative benchmarking requirements in September 2022.

Training the next generation

The skill among the next generation of FHB researchers in Canada was on display at the conference, with many posters and talks presented by graduate students and early career researchers. Specifically, many of these researchers and students are from Western Canada, which puts Canada in a great position to continue to be a global leader in FHB research. MCA is a key part of ensuring that strong and impactful FHB research continues in Canada by providing funding to important projects and sponsoring the student awards at this conference. MCA specifically chose this sponsorship, as we believe in training and investing in the next generation of leaders in the agriculture industry.

Examples of project posters that have received MCA funding.

Final thoughts

FHB is one of the most devastating cereal diseases in the world. Financial losses to farmers in epidemic years can be extensive in Western Canada through yield loss and quality downgrading. In the last epidemic year (2016), there was an estimated $1 billion lost because of FHB infections. We have come a long way with stronger resistance built into available varieties, fungicides that can suppress the disease and a better understanding of agronomic approaches for the integration of these tools. However, we continue to experience challenges, including increased incidence during the 2024 growing season. Continued investment in FHB research is paramount to understand the disease and find innovative breeding and management solutions to reduce its impact on farmers.

Holcus Spot

What is holcus spot?

Holcus spot on corn leaf

Holcus spot on corn leaf

A bacterial leaf disease affecting mainly corn crops, though it can overwinter in both monocot and dicot species. Holcus spot begins as a water-soaked spot on lower leaves and develops into small (1/4 to 1/8 “ in diameter), circular to elliptical, white to tan lesions. Lesions commonly develop a brown margin and sometimes a light halo is visible around the lesions. In severe infections, holcus spot can cause significant lesions on plant leaves, though it is more common to have minor spotting, covering less than 20% of a single leaf’s surface.

Conditions for Development

Holcus infections follow typical Manitoba spring conditions. This includes high winds and heavy rains, followed by extended moisture and warm summer temperatures (24C – 30C). The bacteria is interesting because it infects the leaf via wounding, but it doesn’t need a wound for development. The pathogen also does not spread from an infected leaf to a healthy leaf, as in many other leaf diseases. 

Disease Management

The holcus spot pathogen lives and overwinters on crop residues. Best management practices to gain control of the pathogen are crop rotation and tillage. As a bacterial pathogen, fungicides will have no effect on the disease.

Fortunately, holcus spot affects a very small area of each infected leaf and photosynthesis of the green leaf material is still very effective. This is a concern in more disruptive leaf diseases or killing frosts that affect large areas of each leaf and photosynthesis is allocated to a small area or none at all. As a result of the small area affected, yield is not penalized and holcus spot is more of an aesthetic disease than a concern for farmers. 

Don’t get confused…

Holcus spot infections are relatively uncommon. It is easy to see them and be unsure of what it means because lesions are most often minute and don’t draw attention. 

In the rare occasion that the disease does grab attention, lesions can be confused with drift of a contact herbicide, like diquat (image below), or fertilizer burn. Key tips to determine if it could be fertilizer injury would be to ask the farmer or applicator if anything was applied recently or in the sprayer tank. If there is a possibility of herbicide drift, there will be a clear pattern in the area that would have gotten “hit”. The lesions would likely be worst along the outer rows and lessen the further into the field you look.  Early in the season, injury would not grow with the plant and new leaves would be injury-free. 

Diquat drift on corn leaf

Diquat drift on corn leaf

Jeff Schoenau, professor, University of Saskatchewan

WEB_Schoenau-head-and-shoulders-field-pic---Credit-Lynne-Schoenau

Jeff Schoenau is a professor of soil science and the Ministry of Agriculture Strategic Research Program Chair in Soil Nutrient Management at the University of Saskatchewan (U of S). He earned his bachelor of science in agriculture at the U of S, where he also completed his PhD in soil science in 1988. In addition to his work at the university, Schoenau and his wife Lynn own and operate a grain farm near Central Butte, SK.

The grain farm has provided him with extensive practical experience. Over the years, it has served as a valuable research site for many of his students and colleagues, supporting field research and providing soil samples for various experiments. He has brought graduate students to the farm to demonstrate soil conservation management techniques and facilitates hands-on learning by having students collect soil samples to study organic matter content and its changes across different land management practices.

Where did you work before the U of S?

I have been with the U of S for a long time. I stared as an undergraduate student in 1980, followed by graduate studies, and have been employed here since 1989. My role has been a mix of teaching, research and extension.

What got you interested in this area of work?

Our family farm in Central Butte has been in operation since it was homesteaded. I live in the original Eaton house built in 1913, where four generations of my family have lived. My wife Lynn and I continue to run the farm, and our two children Michael and Brianna live in Saskatoon. The farm is 1,600 acres, and without any hired help it keeps my wife and I very busy.

Tell us a bit about what you are working on at the university.

I manage around 25 research projects at any given time, handling aspects from proposals to implementation, reports and extension work through webinars, podcasts and presentations. I have a great research team. I lead a team of eight technicians and associates, plus eight graduate students, and sit on a number of advisory committees.

In addition to research, I teach an undergraduate course on soil fertility and fertilizers, supervise fourth-year thesis projects, and contribute to graduate-level courses on field research and soil analytical techniques. My days are spent balancing these responsibilities across teaching, research and student mentorship.

One of my current projects, supported by Manitoba Crop Alliance (MCA), focuses on straw harvesting strategies to provide feedstock while maintaining soil and environmental quality. We are looking at the impacts of removing straw, which has growing demand from livestock producers and other industries.

The main site for this research is on my farm, where we are looking at precision straw harvesting. We want to understand how straw harvesting affects soil properties and productivity across different landscape positions, particularly comparing upslope regions with low slopes.

We are collaborating with farmers across Saskatchewan, examining the long-term effects of straw removal on soil fertility, organic matter, moisture and temperature, while also conducting an economic analysis. This fall, we completed our first harvest as part of this project, and we are already uncovering some interesting findings. Our research is designed to help growers make informed decisions about sustainable straw management.

What can you say about the value of farmers providing funding and support to your organization?

The support from farmers is incredibly valuable to my research. Organizations like MCA have provided crucial funding. This farmer-driven support is often matched by provincial funds from Saskatchewan’s Agriculture Development Fund, as well as contributions from industry partners and the government. Federal funding and the cluster program have also been essential in diversifying my research.

These partnerships not only provide financial backing but also offer opportunities to engage with farmers at conferences and field days where I can share my findings and learn from growers directly.

How does that farmer funding and support directly benefit farmers?

Farmer funding and support directly benefit growers by providing them with access to the latest knowledge and practices in nutrient management that are crucial for optimizing agronomic, economic and environmental outcomes. In today’s landscape, where environmental impacts are a significant concern, understanding the processes behind soil and nutrient management is essential. My research focuses not just on documenting impacts but on understanding the underlying mechanisms that can be applied across various regions.

Extension work is a passion of mine, inspired by my mentor, the late professor Les Henry, who taught me a lot about extension and the value of getting your message to growers.

How do you spend your time outside of work?

Outside of work I spend a lot of time enjoying the outdoors. I like being in the field, snowmobiling and hunting. I am also a bit of an automotive historian. I like old cars, trucks and tractors, and piddling around with machinery.

What is the best part about your job?

I really enjoy the opportunity to work with students, both undergraduate and graduate. Some students may spend two to five years working with me, and the constant influx of new students is truly rewarding. I take great pleasure in seeing them evolve and grow throughout their time in the program. Also, collaborating with growers, academics and industry professionals is always exciting.

What is the best piece of advice you have received?

One of the best pieces of advice I received relates to extension work, and it was “Know your audience.” Think about your audience, if it is a group of farmers, researchers or the public – what would they be interested in? What do they really want to know? That really resonated with me.

Call for Tender: Group 2 Herbicide-Resistant Confection Sunflower Hybrid

Manitoba Crop Alliance (MCA) is pleased to invite tenders for exclusive rights, in Canada, to production, marketing and distribution of the Group 2 herbicide-resistant confection sunflower (MCA 359239 and MCA 359306*) produced from the only farmer-funded hybrid confection sunflower breeding program in Canada.

The tender application form, which must be submitted separately for each hybrid of interest, can be downloaded here: 

MCA 359239 and MCA 359306 have been registered with the Canadian Food Inspection Agency.

*NOTE: MCA 359239 was previously called EX 359239 and MCA 359306 was previously called EX 200306/EX 20306.

 

 

MCA reserves the right to reject any or all tenders and to negotiate the terms of agreement with any proponent.

For more information, or requests for samples of the above lines, please contact Katherine Stanley, Research Program Manager – Special Crops with MCA, at 204-898-4122 or katherine@mbcropalliance.ca.

Please forward tender submissions to katherine@mbcropalliance.ca by 4:30 p.m. CST on Nov. 15, 2024.

Delegate position available on MCA sunflower committee – apply today!

Sunflower growers:

  • Want to help build a strong future for the Manitoba sunflower industry?
  • Want to contribute your experience and passion for the agriculture industry to a worthy cause?
  • Want to meet likeminded people and have new experiences?

We need you!

Manitoba Crop Alliance is looking to fill one delegate position on its sunflower committee, starting immediately.

Roles & responsibilities of committee delegates

Who is eligible?

To be eligible to apply, candidates must:

  • Be 18 years or age or older
  • Have grown and marketed sunflower in Manitoba
  • Have paid check-off fees to the organization in the previous fiscal year (i.e., have not received a refund)

Apply now

Please note, the deadline for applications is 4:30 p.m. CST on Nov. 8, 2024.

Completed forms can be submitted electronically or by mail/fax.

Email:
pam@mbcropalliance.ca

Mail:
Manitoba Crop Alliance
Box 188
Carman, MB R0G 0J0

Fax:
204-745-6122

For questions, please contact:

Pam de Rocquigny
pam@mbcropalliance.ca
204-750-0217

Sign up now for our 2024 Corn Yield Competition

Manitoba Crop Alliance (MCA) is looking for participants for the 2024 Corn Yield Competition!

All entrants must be farmer members of MCA.

Prizes will be awarded as follows at the CropConnect Conference banquet, which will be held on Feb. 12, 2025:

  • 1st Prize – $1,000 and a wall plaque (sponsored by the company with the winning hybrid)
  • 2nd Prize – $500 and a wall plaque
  • 3rd Prize – $300 and a wall plaque
  • 4th and 5th Prize – Receive a wall plaque

Instructions for entering the yield competition

Please review the instructions and keep them in mind as you are scouting for the very best spot in your field. Even if you don’t have your spot(s) picked out, you can still enter early!

For more information or to enter, please contact:

Morgan Cott
Agronomy Extension Specialist – Special Crops
Manitoba Crop Alliance
204-750-2489
morgan@mbcropalliance.ca

Colin Hiebert, research scientist, Agriculture and Agri-Food Canada

WEB_Colin_Hiebert_photo

Colin Hiebert is a research scientist at Agriculture and Agri-Food Canada’s (AAFC) Morden Research and Development Centre (RDC). He completed his undergraduate degree in biology at the University of Winnipeg, before continuing his graduate studies in plant genetics, focusing on wheat during his PhD. He now lives in Winkler, MB, with his wife and their two sons.

Where did you work before joining AAFC?

Before starting graduate school, I worked in both the public and private sectors of agriculture. After finishing my PhD, I was a postdoctoral researcher at AAFC’s Cereal Research Centre in Winnipeg (now closed) for a year before I was hired as a research scientist there. Subsequently, my program was moved to Morden.

What got you interested in this area of work?

I have always enjoyed the field of genetics, and wheat is scientifically fascinating. It is also a Prairie icon, so working on wheat connects me to western Canadian culture and the economy. Wheat is also a global crop, allowing me to interact with and impact research and agriculture internationally. The convergence of all these different factors drew me to working on wheat.

Tell us a bit about what you are working on at AAFC.

I lead a wheat genetics program, covering everything from fundamental genetics (classical genetics) to modern genomics tools. We cover quite the continuum of research, which was reflected in the previous cluster (2018-23) and in the current cluster (2023-28).

In the “Pre-breeding and development of breeding tools to diversify disease resistance in bread wheat” 20218-23 project, we focused on introducing combinations of disease resistance genes into elite genetic backgrounds that breeders can use in their programs. One challenge is when we have new or underutilized disease resistance genes, they are often in backgrounds that are not suitable for production in Western Canada. The pre-breeding work addressed this challenge.

Another challenge is that it is difficult to select resistance genes by a visual assessment, so we use DNA markers, or marker-assisted selection, to make the process more efficient and accurate. We discovered new DNA markers that made gene selection more efficient both for our projects and for breeder selection.

A positive outcome from this project was discovering a new stem rust resistance gene, Sr67, which is effective against strains of stem rust fungus including the Ug99 races discovered in Africa. There was previously a lot of research activities that went into mitigating the risk of those races. This work is still ongoing to mitigate the threats that exotic strains pose to Canadian producers.

At Morden, we have a biocontainment facility where we can evaluate plants in our genetic studies or in breeding programs against these exotic races to mitigate the risk of them coming to Canada. Sr67 is effective against present strains and can provide resistance against races that could pose a threat. The discovery was recently published here.

We have included the Sr67 gene in the current cluster project to ensure early adoption of this new gene. This is an exciting extension from the previous round of funding.

What can you say about the value of farmers providing funding and support to your organization?

All my collaborators here and at the other AAFC research centres and I are very grateful to farmers for their funding. In these types of projects, we are trying to directly address their more immediate needs. This funding allows us to translate some of our more upstream work into something that can find its way into a farmer’s field. We want our research to make a difference to producers.

How does that funding and support directly benefit farmers?

My research program focuses largely on disease resistance genes. By working closely with pathologists and breeders, we hope to create more sustainable disease resistance, which could lower input costs for farmers and protect yield potential. There are still issues that require chemical inputs, for example, but if we can get resistance to a point where the efficacy of the chemicals is better because the degree of disease protection required is not as high, that will help farmers.

I hope farmers feel welcomed and comfortable reaching out to scientists. Their insights and concerns help shape the direction of our research.

How do you spend your time outside of work?

I coach my kids’ hockey teams, and we enjoy a lot of outdoor activities like hiking, backpacking and hunting.

What is the best part of your job?

There are many aspects I enjoy. I get to tackle interesting scientific questions that impact an important sector in the Canadian economy and for Western Canada. I also get to interact with the international research community and meet people from around the world working on similar challenging research questions. I also have opportunities to interact with farmers, as I live and work in a rural community at a rural research centre. These conversations offer insights into how our research impacts their operations and livelihoods.

How do you celebrate agriculture?

My wife has done a restart on her family’s farm, and I have been able to participate in that. This was the second year of the farm’s restart, and it has been both enjoyable and a great way for us to celebrate agriculture.

We’re Hiring: Summer Research and Extension Assistant 

We are seeking a summer-term, full-time Research and Extension Assistant to join our dynamic team and serve our farmer members who grow wheat, barley, corn, sunflower and flax in the province of Manitoba.

The Research and Extension Assistant is responsible for supporting MCA staff and operations through field, administrative, data-management and event work for all MCA activities, under the supervision of the Research Program Manager – Special Crops.

This role requires a highly motivated individual with a passion for agriculture, strong communication skills and a positive, team-oriented attitude.

Click here to view the full job posting – including duties and responsibilities, desired qualifications and experience, and working conditions of the position.

To apply, please forward a resume and letter of interest by e-mail to katherine@mbcropalliance.ca. Application deadline for this position is 4:30 p.m. CST on Nov. 8, 2024.

JOB POSTING: University of Manitoba Agronomist in Residence – Special Crops

JOB POSTING: University of Manitoba Agronomist in Residence – Special Crops

The University of Manitoba is seeking candidates for a new, full-time Agronomist in Residence – Special Crops position. This position will lead the development of an applied research and knowledge translation program focused on advancing corn, flax and sunflower production in Manitoba.

The agronomist in residence will collaborate with members of the Faculty of Agricultural and Food Sciences, Manitoba Government oilseed and cereals specialists, Manitoba Crop Diversification Centres and MCA. They will participate in undergraduate and/or graduate student training, in MCA crop committee meetings, and assist in the development of research priorities for corn, sunflower and flax farmers in Manitoba.

We are extremely excited about this position and the benefits it will create for special crop producers across the province!

Learn more and apply

Winter Wheat Variety Yield and Market Share Data – 2024

Manitoba Crop Variety Evaluation Trial Data

Winter wheat yield data from the Manitoba Crop Variety Evaluation Trials (MCVET) is in for the 2024 growing season. This data provides farmers with unbiased information regarding regional variety performance, allowing for variety comparison. Data was derived from small plot replicated trails from locations across Manitoba. Fungicides were not applied to these plots; thus, true genetic potential can be evaluated. Although considerable amounts of data are collected from MCVET, the disease ratings are from variety registration data.

Table 1. 2024 MCVET winter wheat variety descriptions

Note: Table 1 sourced from MCVET team.

Table 2 below summarizes the yield results from the 2024 MCVET data by trial location. The yield results represent 2024 data only, therefore long-term trends should be considered when making variety selection decisions. Previous yield data can be found in past editions of Seed Manitoba. As well, apart from yield, there are other variety characteristics to consider when making variety selection decisions, such as disease, insect and lodging resistance. Check out this Manitoba Crop Alliance article for more information on considerations when selecting a new cereal variety.

Table 2 also indicates if there were yield differences between varieties at each trial site. If there was a significant yield difference the least significant difference (LSD) is also included. The LSD signifies the smallest difference necessary in bushels per acre for two varieties to be considered significantly different from each other.

Table 2. 2024 MCVET winter wheat yield comparison data

Note: Table 2 sourced from MCVET team.

MASC Variety Market Share Data

The Manitoba Agricultural Services Corporation (MASC) has also released its 2024 Variety Market Share Report. This report breaks down the number of acres seeded to each crop type in Manitoba, as well as the relative percentage of acres each variety was seeded on within each crop type. This information is useful to understand overall production patterns in Manitoba. A link to the 2024 report can be found here.

It is important to note that farmer members’ dollars directly contributed to the plant breeding research activities that were instrumental in the development of the top winter wheat varieties.  

Select takeaways

A small number of winter wheat acres were seeded again in 2024, with approximately 35,000 acres seeded.

Figure 1. Summary of the amount of winter wheat acres seeded in Manitoba over the last five growing seasons. Data obtained from MASC Variety Market Share Reports from 2020-2024.

Eight varieties by percentage acres seeded are listed in Table 1, these are the only varieties listed in this year’s MASC Variety Market Share Report. All eight seeded varieties are Canada Western Red Winter (CWRW) wheat.

Table 1. The top eight 2024 winter wheat varieties by percentage of seeded acres in Manitoba.

Variety

Wheat Class

Yield (bu/ac)**

Relative Maturity**

Lodging**

Relative Winter Hardiness**

FHB Resistance**

Relative Acreage (%)*

AAC Wildfire

CWRW

89

Late

Good

Very Good

Moderately Resistant

 

52.8

Emerson

CWRW

83

Medium

Very Good

 

Good

Resistant

14.7

AAC Vortex

 

CWRW

87

Medium

Very Good

Very Good

Moderately Resistant

8.9

AAC Goldrush

 

CWRW

82

Medium

Good

Very Good

Intermediate

7.9

No Var

 

n/a

n/a

n/a

n/a

n/a

n/a

7.7

AAC Gateway

 

CWRW

82

Medium

Very Good

Fair

Intermediate

5.2

CDC Buteo

 

CWRW

80

Medium

Fair

Very Good

Moderately Resistant

2.7

AAC Overdrive

CWRW

82

Early

Very Good

Very Good

Moderately Resistant

0.2

Note: * Data obtained from MASC 2024 Variety Market Share Report. ** Data obtained from the 2023 MCVET Winter Wheat and Fall Rye report. Fusarium Head Blight; FHB.

AAC Wildfire was the top seeded winter wheat variety, occupying 52.8 per cent of seeded winter wheat acres. This is an increase of just over nine per cent from 2023. AAC Wildfire was registered in 2015 and is a late maturing CWRW variety. AAC Vortex, which was registered in 2021, was seeded on just under nine per cent of acres in 2024, up close to five per cent from 2023. AAC Goldrush, which was registered in 2016, decreased in percentage of acres seeded, dipping by just under five per cent from 2023. AAC Overdrive, which was registered in 2022, increased in acres seeded by 0.2 per cent in 2024.

Emerson, which has a Fusarium head blight rating of “resistant,” has been the most seeded variety in Manitoba for several years. However, its acreage has dropped just over 20 per cent since 2022. A similar trend was seen in AAC Gateway, which dropped from 16.1 per cent in 2022, to just over five per cent in 2024. AAC Elevate, which had steady acreage of just over five per cent in 2022 and 2023, dropped out of the top eight in 2024.

Seed Manitoba Variety Selection and Growers Source Guide should be consulted when making variety selections.

Top