Blog: Meet a Researcher

Maryse Bourgault, assistant professor, University of Saskatchewan

WEB_Maryse-Bourgault---CREDIT-Christina-Weese

Maryse Bourgault lives in Saskatoon, where she is an assistant professor and the Western Grains Research Foundation Integrated Agronomy Research Chair at the University of Saskatchewan. She completed her bachelor’s degree in environmental sciences at McGill University in Montreal then started a master’s degree that she later upgraded to a PhD. She then completed her first postdoc with CSIRO, Australia’s national science organization in Brisbane, followed by her second postdoc at the University of Melbourne.

Where did you work before the University of Saskatchewan?

I was working at Montana State University as an assistant professor based at the Northern Agricultural Research Center in Havre, Montana. Before that, I was working as an extension agronomist with the Queensland State Department of Primary Industries and Forestry. Altogether, I spent nine years in Australia. I was only supposed to be there for seven months to finish my PhD and I ended up getting my citizenship, so I can retire on a beach someday!

What got you interested in this area of work?

Being an environment student, I had an obvious passion to make sure our existence on earth is not destroying the environment for everybody else. I was doing a minor in international development and when you go into a community to try and help people, the first thing you address is their basic needs. People need to eat before they will be convinced to the protect the environment.

Basic needs are fundamental and unless you address these, you can push as much as you want on environmental measures, but it is not going to have much impact. That is how I became interested in agriculture. I did a master’s where we were lucky to be sent to Uzbekistan, where they deal a lot with irrigation. Unfortunately, the expansion of irrigation led to the disappearance of the Aral Sea, so they are actively looking to reduce irrigation water use while maintaining agricultural productivity.

I started with irrigation and looking at the environmental impact it had compared to environments like Australia where there is next to no irrigation, yet they are still able to grow plenty of wheat and different crops. I became really interested in dryland agriculture and investigating how we can improve it. A lot of our current irrigation systems depend on water that comes from glaciers, and we know that a lot of glaciers are disappearing. You and I may not see this, but our grandchildren will probably see a world where irrigation water isn’t there, unless we do something to change and reverse that situation.

Tell us a bit about what you are working on at the university.

In a current project, Making cover crops work with grain cropping systems in the Canadian Prairies, partially funded by Manitoba Crop Alliance, I am collaborating with Yvonne Lawley (University of Manitoba) and Linda Gorim (University of Alberta) to investigate how to include cover crops into no-till conventional farming.

In this experiment we are trying different cover crop establishment timings and different cover crop species in canola and wheat. The idea is to enable farmers to incorporate cover crops and their benefits into current cropping systems. The concern is always that we have limited moisture in the Prairies, and if you are growing a plant then presumably that plant is using some of that water. So, can we have enough of those benefits, with nitrogen inputs for example, to compensate? Or can we improve rainfall infiltration to compensate for the water use those plants are using? That is where we are trying to make it work in current systems.

With the chair position, I am trying to have a systems approach to research. Instead of testing one product or one solution to deal with a problem, we are looking at how to design the entire cropping systems in time and space. This means crop rotations, but also testing systems like intercropping, cover crops, and reintegrating forage and livestock into grain production systems. I tend to say that we try things that might fail for farmers, because my salary isn’t linked to our results, so we can afford to try things and try again, until we make it work.

What can you say about the value of farmers providing funding and support to your organization?

Farmer participation and financial contributions to our research are quite important. In our research we are looking at practices, so we do not have a patentable product to sell afterwards or another revenue source that can fund continuing research. Most of the funding we receive comes from farmers, and I think it is useful for scientists to know the questions that we are investigating and the funding we have are because farmers are also interested.

How does that farmer funding and support directly benefit farmers?

Well, sometimes failures are just as useful for farmers as practices that are successful. There are financial risks involved with some of these practices that we can evaluate and take those risks on to learn collectively and share the results with farmers. In our research we hope we can provide better solutions or possibilities to farmers.

Compared to other places in the world, Canadian farmers are quite involved and supportive of our research, so thank you! It makes a significant difference to our research, our knowledge and research careers because there are many interesting opportunities.

How do you spend your time outside of work?

I garden, which is a bit stereotypical for a plant scientist, but I don’t water my plants a lot! I often joke that is why I decided to investigate drought, because I am too lazy at watering my plants. I am also a big reader.

Who or what inspires you?

Students inspire me. It sounds cliché when teachers say it, but it is true. We get into these conversations in class, and I am amazed because as scientists, sometimes we become a little cynical with all the admin and “boring stuff” in the background that can get a bit too much at times, but students have such fresh ideas and optimism about the future. That inspires me.

What is the best piece of advice you have received?

Perhaps this person didn’t think that this would be so important in my life, but someone told me once it is important to think about what you really want in life. I know it sounds a little generic, but often we go through life one step after the other and keep running that hamster wheel. It is important to stop, think and figure out exactly what makes you happy and what you want to do with your life because it goes faster than you think.

Meghan Vankosky, research scientist, Agriculture and Agri-Food Canada

Follow @vanbugsky on X.
Follow @vanbugsky on X.

Meghan Vankosky, a research scientist in field crop entomology with Agriculture and Agri-Food Canada (AAFC), works at the Saskatoon Research and Development Centre (RDC). She holds both bachelor’s and master’s degrees from the University of Alberta and completed her PhD at the University of Windsor. After completing her PhD, Vankosky spent a year in California on a postdoctoral project. She now lives in Saskatoon with her four-year-old standard poodle, Flurry.

Where did you work before AAFC?

Before AAFC, I worked at the University of California at Riverside. I was there one year as a postdoctoral researcher. While there, I collaborated on a release program for a parasitoid to control Asian citrus psyllid, which is an important pest of all kinds of citrus. Asian citrus psyllid, also known as ACP, vectors a disease that kills citrus trees – the disease has no cure and all infected trees eventually die. In California we were trying to slow down the spread of the insect (and the disease) by starting a biological control program.

What got you interested in this area of work?

Well, like many young people, I had no idea that being an entomologist was even a career option. When I started university, I had decided I was going to med school, but realized in my first year that I was not cut out for it.

In my second year I took a selection of courses. One of them was the introduction to entomology and it just went from there. Some fortuitous choices and some good luck and I ended up with an awesome co-mentor for my master’s program, Dr. Lloyd Dosdall, who sadly passed away a few years ago. I learned a lot from him and from other mentors in entomology.

Tell us a bit about what you are working on at AAFC.

Since I came to AAFC in Saskatoon, the biggest project I have been part of (and now co-lead with Jennifer Otani) is the Prairie Pest Monitoring Network (PPMN). Jennifer and I collaborate closely with the provincial entomologists in Manitoba, Saskatchewan and Alberta, and we have funding support from nine different industry groups, including Manitoba Crop Alliance (MCA) and the Agriculture Development Fund.

One of the major activities of this project is to maintain and expand our records of the annual population densities and distribution of key pests of Prairie crops, including bertha armyworm, cabbage seedpod weevil, diamondback moth, grasshoppers, pea leaf weevil, wheat midge and wheat stem sawfly.

These are the major pests we monitor each year. The monitoring data is used to develop the annual risk maps available on the PPMN website. We aim to have the maps ready to share online in December or January, so that we can talk about them at winter outreach events and so that farmers can use them when planning for the next growing season. The maps can be used to estimate insect-related risk to crops going into the next growing season.

Through the PPMN and our current funding, we are also trying to do more lab research to understand better the biology and population dynamics of some of these insects. We are also partnering with Dr. Boyd Mori, University of Alberta, to better understand if there are any risks of resistance development in the insect populations we monitor. Insecticide resistance can affect how we manage insect pests, and we would like to try to add that as a layer to our mapping exercise.

There are a lot of moving parts and pieces to this project, and it is highly collaborative. We have a lot of people who help collect data and share information with us so that we can put the maps together and keep historical records. The historical records are valuable, as we can use them to build models that can help us to predict and understand how insects respond to changing climate. We hope that the PPMN is a helpful tool that farmers and agronomists use to find reliable information about insects in general and about what insects could be a problem in their crops.

What can you say about the value of farmers providing funding and support to your organization?

It gives us an advantage in terms of our ability to do work that is for the public good and that will have a direct benefit to farmers. I think a lot of the work we do at AAFC and in university agriculture programs is all beneficial to agriculture, but knowing that the funds are coming from farmers towards research that aligns with the problems they are facing helps close that loop a little bit faster and bring that information back to farmers.

It is valuable that organizations like MCA have farmer board members as it provides clearer communication in terms of research priorities. I can write my proposals geared to what the research priorities of the organizations are, which are based on what farmers need.

How does that farmer funding and support directly benefit farmers?

A big piece of all the work we are doing with this project through the PPMN is providing information to farmers on a regular basis through our weekly updates and our insect of the week articles, and at the end of every season with insect risk maps. The funding also helps get us, as researchers, to outreach events where we can talk about our research with farmers and agronomists. These conversations not only allow us to share new information but provide us with helpful feedback.

How do you spend your time outside of work?

Doing many different things! I learned all kinds of needle and handicrafts from my grandmothers and my mom growing up, so I do a bit of crocheting and cross stitching and I am learning how to embroider. I took up paint by numbers again during the pandemic, which is something I hadn’t done for years. I like to take my dog to obedience classes and learn how to teach him different things. Also, since the pandemic, I started building Lego again. Now that I am an adult and I have disposable income, my Lego collection is growing and growing. 

How do you celebrate agriculture?

I think by being an entomologist. I grew up on a cattle farm in west central Alberta. I am grateful that I grew up on a farm and had that experience, but I did not want to farm as an adult. I am very grateful that I can give back to agriculture and celebrate it by still working in agriculture by studying insects. I am glad that I can do research that I enjoy and that brings benefits to agriculture.

What gets you most excited about your work?

The insects and the people. The insects are very interesting, and we have a really great team of people here in Saskatoon. The entomology community across Canada is top notch. There are so many great people who work in this field who we collaborate with and learn from. That is what gets me excited about what we are doing.

Follow Meghan (@vanbugsky) on X.

Visit prairiepest.ca to find weekly updates and insect of the week articles during the growing season, and risk maps at the end of the season.

Monika Gorzelak, research scientist, Agriculture and Agri-Food Canada

WEB_headshot-Monika-Gorzelak-winter-deer

Monika Gorzelak is a soil microbial ecologist at Agriculture and Agri-Food Canada’s (AAFC) Lethbridge Research and Development Centre (RDC). Gorzelak completed her undergraduate studies at the University of Guelph in microbiology and her PhD in forestry at the University of British Columbia (UBC). She lives in Lethbridge with her husband and their two daughters, ages two and six.

Where did you work before the Lethbridge RDC?

Before I joined AAFC, I was doing my PhD in forestry at UBC, looking at trees talking to each other. My PhD supervisor, Suzanne Simard, is an inspiration. She recently published a book called “Finding the Mother Tree,” has a popular TED Talk and was recently named one of Time Magazine’s 100 most influential people in the world for 2024.

What got you interested in this area of work?

I’ve always liked the whole microbial world, even though it’s a small sliver of the ecology ecosystem. There are cases where plants help each other – where microbes leverage their relationships with other organisms for their own success and help crops and plants succeed. I’m quite interested in that kind of interspecies and ecological community-based interaction research, and I like to focus on less well understood and slightly understudied concepts in ecology.

Tell us a bit about what you are working on at Lethbridge RDC.

In the Understanding the interactions of N fertilizer technologies, fungicides, and the soil microbiome to optimize sustainable agriculture project funded partially by MCA, we are trying to understand what happens to the beneficial soil microbiome when enhanced efficiency fertilizers (EEFs) are used in cropping rotations.

We are doing that in three different ways. First, leveraging several years of small-plot-scale work by Brian Beres where they evaluated different EEFs in wheat. We sampled their plots and final year of research to compare soil microbiomes and get a grasp of the community composition and diversity of the bacteria and fungi in those soils.

Next, we are going to build on that information in the greenhouse. We are setting up our first greenhouse study to do a closer and more controlled experiment, looking at the impact of EEFs on the soil microbiome.

For the third part of this project, we are going to look at the impact of prior crop on spring wheat in the greenhouse. In summary, this project is looking at how to leverage beneficial soil microbes to help farmers be more productive; answering the question, “Can we do more with less inputs?”

What can you say about the value of farmers providing funding and support to your organization?

I couldn’t do this research without funding from farmers. I am fortunate to have a job that supports me to be able to ask what I think are important questions that are relevant to others. Getting this funding from farmers indicates that they are interested in the work that I am interested in, so it feels more meaningful.

How does that farmer funding and support directly benefit farmers?

The goal, of course, is to create more sustainable agriculture or to create information that farmers can use to make decisions, with the goal of having more sustainable systems at the end of the day.

How do you spend your time outside of work?

I’m a pretty sporty person and I like to be outside when I can. I also love cooking elaborate meals. My favourite thing to cook is always changing, usually whatever is seasonal.

What is the best part about your job?

I really like idea generation and designing experiments. Having an idea and looking at data to see if I’m wrong – because data usually doesn’t lie to you – or if the idea is supported. The whole process is very logical, but it’s also creative at the same time because you must come up with good questions and novel ways to answer those questions. It’s in the design and the uniqueness of experiments where I get excited.

I’ve also loved meeting farmers, especially the direct-to-consumer farmers. I get a lot of my produce locally because I know the folks I’ve worked with and who they are, and I can show up and get a rather large portion of my food locally. That feels awesome.

What are you excited about for the future of agriculture?

I think there are a lot of opportunities to create efficiencies that are going to benefit the environment and the farmer at the same time. Technology has really developed, as well as our understanding about the systems that are needed to help mitigate climate change, for example. There is a lot of opportunity for farmers to contribute, while continuing to produce and make money.

Afua Mante, assistant professor, University of Manitoba

Afua Mante is an assistant professor of soil physical processes in the Department of Soil Science at the University of Manitoba (UM). She was born and raised in Ghana, where she attained a bachelor’s degree in agricultural engineering and a master’s in water supply and environmental sanitation. In 2011, she moved to Canada as a graduate student at the UM, where she completed an additional master’s degree in mechanical engineering and a PhD in biosystems engineering.

Where did you work before your current role at the UM?

I worked at the Centre for Engineering Professional Practice and Engineering Education in the Price Faculty of Engineering at the UM as a post-doctoral fellow for two years (2018 to 2020) immediately after completing my PhD program. In that role, I was responsible for identifying, through consultation and collaboration with stakeholders, meaningful ways for genuine inclusion of Indigenous knowledges, perspectives and design principles, as well as principles of sustainable development and sustainable design, in engineering curricula. After that, I joined the land remediation group in the Department of Soil Science as a post-doctoral fellow, where I oversaw projects on the restoration of prime agricultural lands disturbed by industrial activities. I stayed in this role until January 2022 and then stepped into my current role in the same department as an assistant professor.

What got you interested in this area of work?

It all started when my uncle made what I had seen in junior high agricultural science textbooks become a reality. Use of agricultural machinery was a dream in my community. My uncle got a small tractor with one plow and one harrow. This set of machinery was “gold.” You could see the pride in my uncle’s face. You can bet he used all his savings on them. No financing opportunities. All he wanted was for the crops to meet the rains at the right time. This investment paid off. He saw an exponential increase in yield – his team was so proud to work with him and it provided my family with security.

More than that, I got the opportunity to see the equipment in action. I was mesmerized watching the whole show. My uncle said to me, with a smile on his face, “we have people who research into how these machines work.” That got me interested in pursuing the agriculture path.

I received opposition to that idea from some of my high school teachers. They had not experienced the magic of agriculture, or they were somewhat disconnected from how we need agriculture. To them and many, agriculture was a way to punish kids at school. It had a negative image. I was lucky to have experienced my uncle’s investment at work. My decision was solidified when I figured out that one of my mentors who had visited my high school to support our education was pursuing agricultural engineering (which I did not know existed at the time) at the Kwame Nkrumah University of Science and Technology. He enlightened me on career opportunities in agriculture and from then on, I never looked back.

Tell us a bit about what you are working on at the UM.

I teach the course “Soils and Landscapes in our Environment” at the undergraduate level, soil physics courses at the undergraduate and graduate levels, and the equity, diversity, inclusion and bias sections of the “Principles of Scientific Research and Communication” course at the graduate level.

I run the soil physics research program. In the program, I supervise both graduate and undergraduate students on various projects. We collaborate with stakeholders to identify opportunities and address challenges to advance the agriculture industry. With our projects, our main goal is to understand the complexity of the soil system and how to subject it to applications and interventions in a sustainable way to allow us to continue to enjoy the ecosystem services it lends to us. Currently, we are looking into a wide range of applications and interventions, including farm traffic systems, extreme moisture events, cropping systems, nutrient management, freezing and thawing processes, brine contamination, pipeline construction, and how they interact with the soil for sustainable crop production and a healthy environment. There is more room to expand our research, considering the complexity of the soil system.

I am currently collaborating with two researchers at the UM on a project, “Building resilient soils with cover crops in Manitoba,” funded through Manitoba Crop Alliance and the Sustainable Canadian Agricultural Partnership (Sustainable CAP). In recent years, we are seeing an increase in the number of farmers in Manitoba who are adopting cover crops to conserve the soil, for nutrient cycling or for improving soil health. In addition to these benefits that are associated with cover crops, we are exploring how cover crops can improve soil strength to support trafficability and reduce the risk of soil compaction and other soil deformation processes. Our focus is not just on the wet condition, but also on the dry condition, as that contributes to the deformation processes of the soil under our climate. This project is an opportunity to present a holistic view on the benefits of cover crops integrated into annual cropping systems by taking into account the agronomic and climatic conditions that prevail in Manitoba.

What can you say about the value of farmers providing funding and support to your organization?

As we know, producing food has many pieces to it. In our province, our climate and our wide range of soils make our challenges unique. To overcome these challenges in our community, we have to recognize that we all have a role to play. But here is the catch: it is one thing knowing you have a role to play and quite another having the resources to support your role.

Farmers’ financial contributions to our research programs make it possible for us as researchers to play our role. We are able to train highly qualified personnel (HQP) for the sector and secure resources we need to address current and emerging challenges in our community. This ongoing farmer support demonstrates a community where we all work together for continued success.

How does that farmer funding and support directly benefit farmers?

As I mentioned earlier, there are several pieces to producing food. When farmers provide the support, they set the priorities. They directly influence the sector. They tell us what their actual challenges are. Many times, what we may perceive as a problem is not seen as such by farmers. Also, how we may define a problem to provide solutions may not align with the reality of management. As key stakeholders, we consult and collaborate with them to create working solutions. Knowledge sharing through the life of a research project and after becomes integral to the research. It promotes accountability as well as (re)evaluation of the outcome. Also, with the plethora of challenges the community faces, we need all hands on deck. When we train HQP, we build the workforce needed to tackle the challenges. All these lead to fostering stronger relationships in the community.

Anything you want to add or any comments to our farmer members?

Farmers are our heroes. It is my hope that we all recognize that. They begin the story of the food on our plates. It is a very lengthy story. We may not always hear the story, but what we can all agree on is the excitement and the sense of renewal we have after treating ourselves to a wonderful meal. Thank you, farmers.

How do you spend your time outside of work?

I serve as the vice-chair of the Canadian Foodgrains Bank board of directors, where I offer my perspectives and leadership on the organization’s mission to end global hunger and shape Canada’s contribution to international aid and development. I also write songs and poems, which is a great outlet for me. The most fun thing I do is when my kids and I make up songs and sing them unending.

What is your favourite TV series right now?

Monk – a series on Netflix. The characters all have their unique strengths that they bring to accurately solving cases. What I have learned is that sometimes the strength of another may be frustrating when we are not used to it. It may be too slow or too detailed for us, and we think it could be easier to quickly jump ahead, but then it doesn’t lead us anywhere. When we begin to create the space to understand one another, we realize that we complement each other. To have an effective collective, we need to understand and accept the individuals within the collective.

What is the best part of your job?

The training of HQP. I have HQP from diverse disciplines. This requires me to be intentional about knowing them as individuals so that I can train the whole person. This leads to my HQP owning their training and accepting the challenge to be more. It is a joy to see such a development in them.

Connect with Afua on LinkedIn.

Ahmed Abdelmagid, research scientist, Agriculture and Agri-Food Canada

Ahmed Abdelmagid is a research scientist specializing in oilseed crop pathology at Agriculture and Agri-Food Canada’s (AAFC) Morden Research and Development Centre (RDC). Originally from Egypt, Abdelmagid completed his bachelor’s and master’s degrees in plant pathology from Assiut University in Asyut, Egypt. He received a scholarship to Oklahoma State University for his PhD, and then joined the University of Nebraska-Lincoln to do a post doctorate before moving to Canada in 2015. He joined the University of Guelph for a second post doctorate before moving to Winnipeg in 2017. He now lives in Morden with his wife and three kids, who are in Grades 11, nine and four.

Where did you work before AAFC?

I was a research associate at the University of Manitoba. I conducted research on soybean pathology and taught plant pathology to undergraduate and graduate students. After that, I worked in private industry for a year at Farmers Business Network and led the pathology research on canola diseases, specifically blackleg, verticillium stripe, Fusarium wilt and sclerotinia stem rot.

What is the best part about your job?

I really enjoy my new position. It gives me the freedom to choose the research I think is important for farmers. For example, what is more beneficial in terms of the pathology research or for the whole country because I also collaborate with researchers from Ontario, Saskatchewan and Alberta. We all focus on certain objectives that we think the outcomes will be beneficial to farmers across the Prairies.

What got you interested in this area of work?

When you study agriculture in Egypt the first two years are general, and you choose your major during the third and fourth years. At the time, I didn’t know which department I should join, and I had been warned that plant pathology would be difficult as most of the study would be in English due to the number of scientific pathogen names I would need to memorize.

I saw it as a challenge and looked at it from a different perspective. People get sick and go to the doctor for a bacterial or viral infection. They can speak about their symptoms, but with plants you have to see and study the symptoms to discover which disease it is. I found that to be truly interesting and we were a smaller group of students, which is how I got started into pathology.

Tell us a bit about what you’re working on at AAFC.

Our program focuses on the pathology or plant diseases affecting canola, sunflower, soybean and flax in Manitoba and Canada. I collaborate with breeders across the Prairies and Canada to find new sources of resistance against the most important diseases affecting these crops, and we look at best disease management strategies.

Last year, we began working on a sunflower disease survey funded by Manitoba Crop Alliance. This survey will be similar to what we do on other crops, but it will be very interesting because for many years there has been no verified information about the most important diseases that affect sunflowers in Manitoba and Canada.

We will be in the fields to see what the most important diseases affecting yield and quality of the heads are across Manitoba. We will collect samples of the roots, stems and heads and bring them to the lab to do isolation and identification. From there, we will report on what we saw during the growing season. It will be very beneficial to the industry to know what those diseases are, so the breeding programs can focus on them in the future.

What can you say about the value of farmers providing funding and support to your organization?

It is very valuable. Farmer support is crucial to make our research more practical and applied. We receive funds from other resources to investigate different research ideas, but the link between science and farmers is very important. It tells us as researchers what is important for farmers, what would be more beneficial for them in the future and what ideas or challenges we need to work to solve.

How does that farmer funding and support directly benefit farmers?

We are working on the problems that worry farmers and that they need solutions to, especially in the short term. We know they don’t want to see a solution in six or 10 years – they want to see something practical in the short term. We work to give them verified data and good results, and in some cases, we can recommend management strategies.

How do you spend your time outside of work?

Winter in Manitoba is too long, especially for someone like me from the desert. Although I’ve been here for several years, I still have a hard time enjoying outdoor activities in the winter. Time outdoors in the summer is very precious, and I enjoy it a lot.

What is your favourite food or favourite meal to cook?

Foul mudammas (Egyptian fava beans). In Egypt, fava beans are a main dish, especially for breakfast. It’s special, very simple and very healthy.

All you have to do is rinse a can of fava beans, put them in a deep pan with a little bit of oil of your choice. Cut tomato and green pepper, and put the mixture on medium heat. Cover it and leave it for about 7 to 10 minutes. Next add lemon, salt and cumin. Smash it together with a fork, and you can eat it with toast or pita bread. It’s delicious!

Connect with Ahmed on LinkedIn.

Aida Kebede, research scientist, Agriculture and Agri-Food Canada

Aida Kebede

Aida Kebede, a research scientist at Agriculture and Agri-Food Canada’s (AAFC) Ottawa Research and Development Centre (RDC), is focused on corn germplasm development and genetic studies. She was raised in Ethiopia and received M.Sc. and B.Sc. degrees in plant breeding and plant sciences from Haramaya University, before completing her PhD in plant breeding from the University of Hohenheim in Stuttgart, Germany. She now lives in the Ottawa-Gatineau metropolitan area.

Where did you work before AAFC?

Prior to coming to Canada, I worked at the International Maize and Wheat Improvement Center, also known by its Spanish acronym, CIMMYT. As a PhD student, I spent five years conducting research on improving breeding methods for corn drought tolerance and supporting the establishment of a double-haploid breeding program. I was part of the team that brought the in vivo double haploid line production technology from the University of Hohenheim, Germany, to CIMMYT, Mexico.

After that I worked as a post-doctoral fellow with Lana Reid (former corn breeder) and Linda Harris in the corn breeding program of the Ottawa RDC from 2013 to 2016 and afterwards as a PRP-research scientist at the Morden RDC under the supervision of Curt McCartney from 2017 to 2019. At Morden, I worked on finding molecular markers for disease resistance breeding to oat rusts.

What got you interested in this area of work?

A renowned plant geneticist from Ethiopia, Melaku Worede, who is also a good friend of my father, inspired me to study plant breeding for my postgraduate studies. Since I did my PhD thesis research in corn breeding, I could say corn grew on me.

Tell us a bit about what you’re working on at AAFC’s Ottawa RDC.

My day-to-day activities for a given growing season include designing field trial experiments and nurseries, overseeing planting, recording germination and seedling vigour, followed by observing plant growth and eliminating lines that do not fit the set criteria. In the summer, pollination is a collective effort for my technicians, summer students and myself. We work seven days a week until mid-August.

Then in September we go through our nurseries for a second round of selection and eliminate lines with undesirable traits such as tillering or overall plant stand. Next, we (my technicians and myself) harvest nurseries, isolation blocks and yield trials, and then harvest seed gets processed and the data analyzed in order to do the selection before the new season starts in January.

Around seven years ago, Lana Reid, plant physiologist, and Malcolm Morrison, plant phenomisist, at the Ottawa RDC started making crosses and tested a new method of cold tolerance screening and selection. In this method, crosses and progenies were germinated in cold temperatures (13°C day / 7°C night) in a growth chamber and those which germinate within 21 days were transplanted to the field and selected based on additional attributes to pass to the next generation. This method of selection granted a five-day earlier germination advantage over the commercial check hybrids when tested here in Ottawa. I took over the advancement of the breeding population for cold tolerance in 2021 and continued until the end of the Canadian Agriculture Partnership (CAP) project in 2023.

There is a new project starting this year under the Sustainable CAP stream where the cold-tolerant breeding populations will be tested for cold tolerance under field conditions here in Ontario and Manitoba. This will be in collaboration with Yvonne Lawley from the University of Manitoba.

My role as a breeder is to continue advancing the germplasm in the breeding pipeline with selection for best yield performance and early spring cold tolerance. Promising inbred lines will be released in the coming three to four years, and breeding companies could make use of those inbred lines for making commercial hybrids.

What is the best part about your job?

The best part about my job would be that our research outputs have direct practical application. The inbred lines we develop are taken up by private companies that will turn them into hybrid varieties for use by corn growers.

In addition, the multi-disciplinary nature of our work gives us the opportunity to interact with different national and international organizations, universities and industry groups who dedicate their efforts to the sustainability and productivity of the corn industry in Canada.

What can you say about the value of farmers providing funding and support to your organization?

I would say it is the golden key for maintaining continuity of our research work. Germplasm development is not a short-term undertaking. You need at least nine or more years to develop a variety that a corn grower can use in their field. The support we get from farmers ensures that we succeed.

How does that farmer funding and support directly benefit farmers?

It gives farmers the arena for their ideas to become reality and their voices to be heard, plus the opportunity to guide future research directions. At the end of the day, they are the direct users of the technology and germplasm we develop.

How do you spend your time outside of work?

I love gardening. I have a community garden lot near my home where I grow vegetables and herbs. I like playing basketball and badminton as well.

How do you celebrate agriculture?

Attending the Corn and Apple Festival in Morden, MB, used to be one of my favorite events when I was living there. I really enjoyed the farm machinery parades, buying stuff from the local vendors with homemade products and the free, cooked sweet corn they serve to everyone. I haven’t found a similar event in Ontario yet, but I have been to a maze inside a corn field, which was a lot of fun.

Who or what inspires you?

People with positive thinking attitudes. I am inspired by those who focus on the solutions rather than the problems.

What is your favourite food or meal to cook?

Sweet corn. It only takes five minutes to cook in boiling water, and tastes delicious.

Lorne Grieger, director of technical sales, Prairie Agricultural Machinery Institute

Follow @PAMI_Machinery on X (formerly Twitter).
Follow @PAMI_Machinery on X (formerly Twitter).

Say hello to Lorne Grieger, director of technical sales at the Prairie Agricultural Machinery Institute (PAMI).

Grieger studied bioresource engineering (formerly, agricultural engineering) at the University of Manitoba and has worked with PAMI in both project management and ag research related positions. He grew up on a farm in Swan River where his family still farms, and he and his wife live near Birds Hill, close to his wife’s family. They have two daughters.

Where did you work before PAMI?

I’ve worked for PAMI on two separate occasions. I previously worked for a pharmaceutical company. When I look at what we’re doing for the livestock sector, biosecurity principles are very similar in terms of managing disease or daily livestock operations. I’ve used a lot of background from my time there and applied it to the work we do with the livestock sector at PAMI.

I also worked in a consulting firm for a few years. From that experience, the machinery design side is very applicable to some of the work we do now for industry clients. As an organization, we work in two areas: the industry side, where we help companies do innovation testing, design and engineering work prototyping, and the other side is public research.

What got you interested in this area of work?

I’ve always liked equipment – it’s intriguing. I love working with tractors and big iron, but also the technology piece that goes with it. You have these large pieces of steel with control and guidance, the technology is remarkable. When you think it hasn’t changed or can’t get any better, somebody comes out with a new concept or idea. It’s ever changing, ever evolving and ever improving.

Tell us a bit about what you’re working on at PAMI.

In my current role, I oversee proposals. I collaborate with grower groups to understand their needs and see how we can address those needs through PAMI’s expertise and experience. We look at implementation of technologies or understanding technology features, and how to use it on farm.

Some of our work that Manitoba Crop Alliance recently funded was looking at seed damage from large air seeders, for example. If you understand what that seed moisture is and the germination impact, you can adjust your seeding rate accordingly to get the stand you’re looking for. After all, when you’re investing millions of dollars in equipment, you want to understand the best fit or how to use it effectively for your current operation, because equipment is not one size fits all.

On the grain drying side, a lot of the work we’ve done is looking at current practices and measuring or understanding what farmers’ baselines are in order to make decisions, or find ways to increase efficiency and reduce costs. This could refer to new technology as well, understanding grain drying aspects both in the bin as well as dedicated drying systems. By using different pieces of equipment or looking at different practices as a whole, we are looking at the best ways to manage risk or ways to increase profitability.

If we can understand some of those details, we can provide both simple and more complex ways of working with equipment or modifying current processes to allow farmers to be more efficient and more profitable down the road.

What can you say about the value of farmers providing funding and support to your organization?

Producer funding is critical for the work we do. We don’t want to just do research – we want to do work that’s applicable to people that are feeding their families and looking to pass down a farm to the next generation. If you put money behind a project, that means it’s important to you, and as a result, it’s important to us. We want to work in those areas.

Having open dialogue with grower groups helps us understand what is important to members, so that, as we look at the future of our organization, we can invest in the right resources, people and expertise to be able to answer the questions that grower groups are asking.

How does that farmer funding and support directly benefit farmers?  

We aren’t telling people how to do their craft or run their business. We want to provide information that can be used to make good decisions. That could be in terms of operational or equipment investments, to modifications or investments on a capital side as well. It is a little bit of de-risking when you look at adopting a new practice, what exactly does this mean? If we can answer that on an individual basis so everybody can learn and understand it, it lowers the risk for all involved.

How do you spend your time outside of work?

Camping, and being outside as much as possible. The Duck Mountains are where my heart is. I just love being up there, as well as Whiteshell and further on into northwest Ontario. It’s a gorgeous country that we live in.

What is the best part about your job?

The best part of my job is constant variety and working with new ideas and new concepts. If we do a certain practice, what does that mean for farmers? Does that make a difference in terms of their operations, revenue and sustainability on a farm level? That’s what I really enjoy, working out the applicability down to the farm gate difference, including how economics, different practices and equipment choices can be affected as a result of the work we do.

What are you excited about for the future of agriculture?

The future of agriculture is ever changing. We always find ways as an industry to innovate, problem solve and rise above challenges. Just when you think you’ve seen it all, something else comes along, and we find ways to adapt and to be successful as a result. Moving forward, seeing the next generation come online along with new technologies and advancements is remarkable.

Follow @PAMI_Machinery on X (formerly Twitter).

James Tucker, research scientist, Agriculture and Agri-Food Canada

James-Tucker_crop

James Tucker is a research scientist in barley genomics at Agriculture and Agri-Food Canada’s (AAFC) Brandon Research and Development Centre (RDC). He completed a bachelor of science in chemistry and biology at the University of Winnipeg before spending a year in entomology at the University of Manitoba (U of M). He then moved to Montreal to do a master’s degree in quantitative genetics at Concordia University. He worked for a while before returning to studies later in his career to complete his PhD in plant science at the U of M. Tucker lives outside of CFB Shilo with his wife. He is the father of two children.

Where did you work before the Brandon RDC?

I started out as a summer student in the ’90s and worked my way up as a research technician in Winnipeg at the Cereal Research Centre before moving to Brandon in 2001. I worked as a biologist and then a barley pathologist, supporting the barley breeding program. In 2018, I was made into a research scientist at the centre. Aside from one summer working for the Canadian Forestry Service, my work experience has all been within AAFC.

What got you interested in this area of work?

Initially, it was employment. I was working in Winnipeg in entomology and molecular genetics as a technician and then took a job as a barley pathologist. I had an interest in genetics for a long time. In genetics there is a lot to work on and there are always new and complicated problems. What really grew on me was the community. Barley is an extremely co-operative research community and it’s been a really positive experience working within that community.

Tell us a bit about your work at the Brandon RDC.

The Developing barley germplasm with improved resistance to Fusarium head blight (FHB) and other biotic stresses for western Canada project is the major driver of my research. This project ran from 2018-23 and was funded under the National Barley Cluster.

I work closely with Ana Badea, a barley breeder here at the Brandon RDC, as well as the other barley breeders in Canada. There are a lot of diseases in barley making it quite complicated. We focus on the diseases that are of major economic concern and cause damage for farmers. This includes Fusarium head blight (FHB), stem rust, spot blotch and other biotic stresses that affect barley production.

In the spring, we work on experiments to get seed from Dr. Badea’s program to collaborators, for example – and receive seed from other institutions around the country and internationally – and set up studies and seeds for our disease nurseries (stem rust, leaf disease and FHB) here at the centre. Plots are grown and infected, followed by record-taking of disease ratings for thousands of plots. A big task in the fall is harvesting the FHB nursery. In barley, there is not a good relationship between the visuals and the toxins like wheat, so we need to harvest a lot more, and by hand. The work is labour intensive, where approximately 10,000 rows are harvested each year. Then during the winter, we are cleaning and processing the seeds, sending them for analyses in order to get all of the information back in time for the breeders to use to make their selections.

What can you say about the value of farmers providing funding and support to your organization?

In my view, a lot of the research I do is funded through farmers and their faith in giving me the funds I need to do the research that matters to them. In the research I do, I always focus on the benefits for farmers, which is very important to me. I really appreciate the funding support.

How does that farmer funding and support directly benefit farmers?

In my research program there are short-term and long-term goals. Some things take longer than others. Breeders have a big job. They have to breed for so many traits, while constantly trying to improve yields, so that farmers can benefit. I work with the breeders to help them select the best lines to advance depending on the trait they are targeting (e.g., resistance). This results in farmers getting new and improved varieties with better disease resistance packages, for example. 

How do you spend your time outside of work?

I do a lot of gardening. I’ve been doing martial arts for most of my life, and I really enjoy being in nature going hiking or walking in the forest and riding ATVs.

How do you celebrate agriculture? 

I have a good-sized garden. I love putting my hands in the soil, smelling the soil and growing things. It’s kind of like my Zen time. It’s pretty exciting that we get to put seeds in the ground and the sun provides the requirements to grow and produce food that we get to eat. I normally grow excess food and tell the neighbours it’s a “you pick” garden, so they can come and take what they like.

What is a good piece of advice you’ve received?

 I’ve had a lot of mentors over the years, and some good advice I received is that research is a slow and steady game of increments over the years. There are really good days where you find something or a new discovery, but it’s slow working and it takes time, especially in FHB research. You have to gain an understanding that things don’t happen quickly and it takes time and resources to do research, but over time, you eventually achieve your goal.

Click here for more information about the Brandon RDC.

Andriy Bilichak, research scientist, Agriculture and Agri-Food Canada

Follow @ABilichak on X (formerly Twitter).
Follow @ABilichak on X (formerly Twitter).

Andriy Bilichak is a research scientist and cereal biotechnology program lead at Agriculture Agri-Food Canada (AAFC)’s Morden Research and Development Centre (RDC). Bilichak completed his PhD in plant biotechnology at the University of Lethbridge and his postdoctoral fellowship at the Lethbridge RDC.

He was raised in Ukraine and now lives in Winkler, MB, with his wife Nina, who is currently on maternity leave with their baby girl, their son Mark, and his mother.

Where did you work before the Morden RDC?

After my postdoc at the Lethbridge RDC, I worked on a collaborative project with Dow AgroSciences, now Corteva, developing methods for non-transgenic gene editing in wheat. After that, I worked for a startup biotech company where I looked into different genotypes of high-THC and high-CBD lines of cannabis and how to improve pathogen resistance. Then I eventually began my position at the Morden RDC.

What got you interested in this area of work?

I’ve been working on gene editing from the beginning. My PhD was in plant transformation/biotechnology, so it was a logical next step for me to move into gene editing. I enjoy working with like-minded people and thinking and living in science and working towards new discoveries.

Tell us a bit about what you’re working on at the Morden RDC.

My program at the Morden RDC focuses on gene editing and functional genomics, which is the characterization of novel genes. We are trying to identify genes and their role in pathogen response or abiotic stress, for example. The original program was focused on spring wheat, but we’ve added winter wheat and plan to add barley as well.

Since we work on biotech and transformation, the major part of our program is gene editing. We use CRISPR/Cas9 gene editing tools to dissect the contribution of different genes, either in pathogen response like leaf rust or abiotic stress. We also collaborate extensively with other groups that look into other traits like pre-harvest sprouting, for example.

The overall vision for the program is to adopt gene editing for targeted modification in elite Canadian cultivars. We are trying to discover genes that are involved in tissue culture response in wheat, as we want to apply this knowledge to introduce gene editing into elite Canadian cultivars.

The goal would be, for example, if the breeder comes to us and says, “I have this great variety with all these nice agronomic qualities, but it lacks this one. Can you edit or modify this trait for me through genetics/gene editing?” we would be able to quickly do that. The transformation protocol usually takes four months from the time we put the embryo in tissue culture until the time we regenerate the seedling, and it takes another four or so months for the plant to grow. So, let’s say we can regenerate a particular mutation or edit the target gene within a year. This improves line and delivery to the breeder.

In terms of peptides work, the Application of antimicrobial peptides to increase cereal crops resistance to fungal pathogens project was funded by Manitoba Crop Alliance and Western Grains Research Foundation. Through this research, our lab student screened a library of 20 peptides that were selected from literature that had indications of potential antifungal properties that were never tested against leaf rust.

She found some peptides had much stronger antifungal activity compared to others. We then took those peptides and checked the growth curve to try to find out the best concentration for them. Then, when we sprayed those peptides on the leaf surface before infection with leaf rust, we discovered we could suppress the first infection on the susceptible cultivars by just foliar application of those peptides.

We also discovered endogenous wheat-encoded novel peptides that could potentially be used as a fungicide. We are currently working toward engineering these peptides in the wheat genome through gene editing applications. In this way, wheat expressing the anti-fungal peptides in leaves can potentially become more resistant to rust infection. Eventually, these edited non-transgenic lines can be tested in the field for pathogen resistance.

What can you say about the value of farmers providing funding and support to your organization?

We highly appreciate funding from farmers that allows us to do discovery work and adoption of new biotechnology tools for wheat improvement. Most of the work we do is upstream science that eventually can find its application in the farmer’s fields.

Biotechnology tools become very important in adapting wheat genetics to better cope with climate change and unpredictable weather conditions during the growing season. The gene-edited crops become widely accepted worldwide and through funding of biotechnology programs like ours, Canadian farmers can remain competitive on the international markets through growing of the improved cultivars generated using novel breeding tools.   

How does that farmer funding and support directly benefit farmers?

Although we work in upstream science, in every project we apply for we indicate how that work will benefit farmers in the long term and how we can transition it from the lab into the field. We collaborate extensively with other groups (like breeders) on the transition into the field.

In terms of gene editing, we focus on traits that are important to farmers like increased yields or reduced pesticide applications. We are thinking about how to reduce fungicide applications, for example, by looking into alternative means to control pathogens (like peptides). Every research project is centred around the objective of benefitting farmers and agriculture.

How do you spend your time outside of work?

I enjoy sports. I like playing soccer, especially with my son because he is really into soccer. I used to play table tennis and I hope to renew that passion again.

What is the best part about your job?

It’s always interesting for me to go to the lab where we apply biotechnology tools for trait improvement in wheat. Whether we increase the transformation or editing efficiency, whether we have a particular phenotype that we are interested in, and how, in general, gene editing can contribute to the development of new varieties and how it can help in breeding programs. In my opinion, now is a very exciting time to be in plant biotech.

What is your favourite podcast right now?

I enjoy listening to different science podcasts, especially ones that tell odd stories about scientific discoveries and how they came into the world. Two examples are Unsung Science and Disappearing Spoon. They are both very interesting.

Follow @ABilichak on X (formerly Twitter).

Alankrita Goswami, assistant professor, University of Manitoba

Follow @alankrita10 on X (formerly Twitter).
Follow @alankrita10 on X (formerly Twitter).

Alankrita Goswami is an assistant professor in the Department of Agricultural Economics and Agribusiness at the University of Manitoba (U of M). She holds a master’s in rural management, an engineering degree in biotechnology and a PhD in agricultural and applied economics from the University of Georgia. Goswami lives in Winnipeg and works at the U of M Fort Garry campus.

Where did you work before the U of M?

I was working as a PhD student for four years at the University of Georgia in the United States, and then I came to Canada to work at the U of M.

What got you interested in this area of work?

Economics always interested me. I was doing my engineering degree in biotechnology back in India and in my third year I wanted to be in a workspace where I could somehow contribute to the community. There is a tradition of teaching in my family, both my mother and grandmother are teachers and many of my aunts are teachers.

With an original interest in contributing to the rural community in India, I went for an MBA with a specialization in rural management. It was a very structured program where I had three internship components and got to live and work in different villages.

This shifted my areas of focus from biotech to rural management, and then I started as a pre-doc at the International Water Management Institute-TATA Policy program in India. This got me into agricultural economics as I began looking into irrigation and how it contributes to the ag economy back in India. Then the transition was complete – I began my PhD after that.

Tell us a bit about what you’re working on at the U of M.

In terms of teaching, last semester I taught the agricultural marketing course and this semester I am teaching applied econometrics.

My PhD dissertation chapters were on U.S. agricultural futures markets. My research was mostly geared towards looking at futures markets as a risk management tool for farmers and their effectiveness, especially during anomalies such as what we call non-convergence in the markets. This is when the futures markets are not aligning with the cash markets and dissecting what the possible reason(s) could be.

Futures markets, by design, incorporate not just current supply-related information in prices, but also related to future supplies. In a current project, I am looking at the interconnectedness of markets such as Canadian canola and U.S. soybean oil in the context of anticipation of future supply shocks.

We are studying the transmission of the impacts of expectations of future supply shocks from one market to the other. This will help us understand how these markets are interconnected with each other through the market expectations channel. By conducting such research exercises we intend to distill information on what future supply disruptions mean in context of farmers’ risk management strategies involving futures markets. We also intend to extend this work to include impact of anticipation of future supply disruptions in livestock markets.

Another area I’ve started into is microstructure of agricultural futures markets. At the microstructure level of agricultural markets, we aim to study the traits of the market at a higher time resolution (such as nanoseconds). Understanding market activity at such a micro level can be key to distilling information on aggregate trading behaviour of ag-market participants. Such information can be of utility to users of ag futures, such as farmers, ag businesses, etc. By studying micro-level details of ag-futures markets, I will aim to translate learnings from this work into information of practical utility for the users through a series of technical bulletins.

What can you say about the value of farmers providing funding and support to your organization?

Such funding is of great help to researchers like me who want to contribute to the agricultural community through our work. It provides the opportunity to leverage resources to study issues plaguing the agrarian landscape and come up with solutions to such issues.

How does that farmer funding and support directly benefit farmers?

The extension-centric work in the coming months will be very important. Technical bulletins aimed at the farming community for example, be it the work on looking at anticipations of supply shocks on ag markets or be it this very aspect of looking at the market at a very micro level, I want to translate the information generated from my work into practical utility for farmers.

 How do you spend your time outside of work?

I have always been a voracious reader. I like running and I am hoping to get back into painting this winter. I like to go back to a memory, think of something and paint it. 

What is the best part about your job?

I love research. I like to inspect things and dissect social issues that might be impacting the agricultural economy, and I like engaging with farming communities. Agricultural policy also interests me and my job is a mix of everything I love, including teaching.

What is your favourite food or meal to cook?

I love Italian food. My mother is a very good cook and she would always be preparing it in so much detail, and when you watch a person prepare food with that much love and attention to detail, it gives you the feeling they are creating something important. She really got me hooked on Italian food.

Follow @alankrita10 on X (formerly Twitter).

Top