Xiben Wang, research scientist, Agriculture and Agri-Food Canada
Xiben Wang was raised in China and completed his bachelor’s degree in plant pathology at Nanjing Agricultural University in Nanjing, China. After he finished his undergraduate degree, he moved to Canada to complete his master’s in plant science at McGill University in Montreal, QC. He moved on to earn his PhD at the University of Manitoba (U of M) in the in Department of Plant Science and is now a research scientist at Agriculture and Agri-Food Canada’s (AAFC) Morden Research Development Centre (RDC). Xiben lives in Winkler, MB, with his wife and son.
Where did you work before the Morden RDC?
After I earned my PhD, I worked at the Cereal Research Centre in Winnipeg in the area of cereal pathology before coming to work at the Morden RDC.
What got you interested in this area of work?
Both my parents worked in agriculture. I can still remember spending most of my summers in my dad’s lab looking at samples he collected from growers’ fields under the microscope. When I was working on my master’s and PhD, I also had very good mentors who were really hard workers. They encouraged me to study problems that were appearing and to work to fix those. This is what really got me interested in working in agriculture.
Tell us a bit about what you’re working on at the Morden RDC.
My program covers multiple aspects of diseases on small green cereals (wheat, barley and oats). We use different techniques to identify disease pathogens to try to get a better understanding of the species present in farmers’ fields. We work to determine what is the most important pathogen of concern and what damage it may cause.
Another part of my program is working with breeders to try to develop varieties that have increased resistance against Fusarium head blight (FHB) and other major leaf spot diseases found on barley and oats. I operate a disease nursery at Morden RDC for FHB and different barley leaf spot pathogens.
I’m interested to see the impact different management practices can have on soil microbial communities through metagenomics analysis. In the Crop rotation affects disease suppressive soil microbiomes project funded by Manitoba Crop Alliance along with Western Grains Research Foundation and CAP Ag Action, we are looking into whether different crop rotations may promote some groups of bacteria and suppress others.
For example, in a cereal-over-cereal rotation, we see an increase in abundance of the Fusarium pathogen we know will infect the cereals. But in other crop rotations, such trend is not observed. We want to see whether we can identify a certain rotation type that can promote beneficial microbial populations (plant growth promoting bacteria). By doing so, we hope to be able to determine the bacteria most likely present on your farm and what impact it might have (beneficial or negative). If that impact is negative, we’d then look at the recommendations to minimize that.
The long-term goal is to incorporate several sites in different provinces to generate multi-year data sets, so in the long term, we can identify the general trend of what we expect under different crop rotation practices. Hopefully, we can minimize our reliance on commonly used fungicides to control different diseases that are common to barley nodes or wheat.
This project is almost in the second year and we are nearly finished analyzing the data we gathered from the first year. We are expecting to have some preliminary results next year.
What can you say about the value of farmers providing funding and support to your organization?
Our work is directly related to farmers. We try to identify what the most important threat is and look at the possible solutions, as well as what we can do to increase the varieties they grow and minimize the costs they may have to try to combat diseases.
I want to express that the funding from farmers is very important for us to be able to continue the work that we do.
How does that farmer funding and support directly benefit farmers?
There is a direct value to farmers. Take the surveillance work we do, for example. It is very important to gain a better understanding of what major diseases are in fields causing damage, and how it might result in yield loss. When we know what the risks are we can study the best way to control them to minimize yield losses. We study these pathogens so we can develop a strategy to mitigate the losses and try to develop varieties with better resistance, so that farmers will have less risk of loss due to these pathogens. The surveillance work also allows us to monitor the emerging diseases in farmers’ fields and be proactive on potential issues.
How do you spend your time outside of work?
I love to spend time with family and go to sports. Soccer is my favourite sport – I play and I love to watch as well. Go Brazil!
What gets you most excited about your work?
There is always something new for me to study and new techniques to learn. I think that is what gets me most excited. I love to visit farmers’ fields to do surveys. When we find something that we don’t know, I get really excited about the challenge to try to figure out what it is.
What is the best piece of advice you’ve received?
Always look for something new. Don’t jump to conclusions too quickly – study first, verify second and then you’ll get your conclusions.