See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/312319114

Phosphorus and Zinc Fertilization Beneficial Management Practices for Corn in Manitoba: 2015 - 2016 Season Update

Poster ·	December 2016				
DOI: 10.1314	0/RG.2.2.29175.42402				
CITATIONS	;	READS			
0		150			
5 author	rs, including:				
	Magda Rogalsky		Yvonne Lawley		
	Monsanto Canada		University of Manitoba		
	2 PUBLICATIONS 0 CITATIONS		29 PUBLICATIONS 307 CITATIONS		
	SEE PROFILE		SEE PROFILE		
	Mario Tenuta				
129	University of Manitoba				
	183 PUBLICATIONS 3,889 CITATIONS				
	SEE PROFILE				
Some of	the authors of this publication are also working on these related projects:				

Cover Crops for Soil Health and Sustainable Farming View project

Soybean Cyst Nematode Research View project

```
All content following this page was uploaded by Magda Rogalsky on 14 January 2017
```

Phosphorus and Zinc Fertilization Beneficial Management Practices for Corn in Manitoba 2015 - 2016 Season Update M. Rogalsky¹, D. Flaten¹, Y. Lawley², M.Tenuta¹, J.Heard³

¹Department of Soil Science, University of Manitoba, Winnipeg, MB R3T 2N2 ²Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2 ³Manitoba Agriculture, Carman, MB R0G 0J0

Due to corn's sensitivity to P and Zn deficiency and the limited mobility of phosphorus (P) and zinc (Zn)¹ in soil, corn often needs "help" to acquire adequate amounts of these nutrients during its early stages of development. Arbuscular mycorrhizal fungi (AMF) form a symbiotic relationship with plant roots, assisting crops such as corn to acquire P and Zn.² Therefore, subsequent planting of corn (Zea mays L.) following canola may be problematic in terms of early season nutrition, because canola is non-mycorrhizal and in the year of cropping with canola AMF populations decrease. Corn after canola can be prone to P and Zn deficiencies, which may delay early season growth and development¹, possibly resulting in yield reductions.³ In such cases, application of starter fertilizer may be helpful in offsetting these early and potentially later season drawbacks. Additionally, planting corn in high residue conditions, including strip till systems creates a high risk of cool soil zones, which may lead to development of P deficiency symptoms at the early stages of development due to reduced root growth and P uptake.⁴ Under such conditions, application of starter fertilizers, especially P can help accelerate seed germination, improve early-season crop development, decrease grain moisture content at harvest and increase grain yield of corn⁵. Conversely, conventional tillage operations impose high levels of soil disturbance, which can have a negative effect on AMF quantity and colonization³ while strip tillage creates conditions conducive to AMF over-winter survival⁶. Presence of viable hyphae in the spring allows for rapid corn root colonization, which is important for meeting the early-season nutrient requirements of corn.⁶

CROP ROTATION STUDY

METHODOLOGY

Preceding crop treatments (canola and soybeans)

- Study sites established in spring 2014 (Carman, MB, Stephenfield, MB) spring 2015 (Carman, MB, Portage la Prairie, MB);
- \diamond Canola and soybean grain was collected for yield determination, canol soybean seed was harvested and crop residues disked in fall;

Corn test crop (DKC 26-28 corn hybrid)

Andomized split-block design with 4 replicates taking into consideration preceding crop (canola or soybeans);

Fertilizer Treatments: all treatments sidebanded in the spring (2" beside and 1" below No P check

27 lb P_2O_5 and 6.7 lb S ac ⁻¹	Sideband	MAP
54 lb P_2O_5 and 13.4 lb S ac ⁻¹	Sideband	MAP
27 lb P_2O_5 and 6.7 lb S and 0.67 lb Zn ac ⁻¹	Sideband	MES
54 lb P_2O_5 and 13.4 lb S and 1.34 lb Zn ac ⁻¹	Sideband	MES

Year	2	015	20	16	Year	20	15	20	16
Location	Carman, MB	Stephenfield, MB	Carman, MB	Portage, MB	Location	Carman, MB	Portage, MB	Carman, MB	Portage, MB
Planting Date	May 25	May 26	May 12	May 16	Planting Date	May 25	May 26	May 12	May 16
Harvest Date	October 15	October 14	October 5*	flooded	Harvest Date	October 16	October 19	October 5	October 6
Olsen-P (ppm)	19	6	9	12	Olsen-P (ppm)	8	11	5	14
DTPA-Zn (ppm)	1.50	0.82	1.91	1.81	*Carman 2016 site was hand	d harvested due to wind damag	ge and green snap; Portage 2016	site was hand harvested due to l	nail and black bird damage.
*Carman 2016 site was hand	harvested due to wind dam	age and green snap.	<i>igure 1</i> Greater e rowth for sidebar .) versus no P ch	arly season nd 27 lb P ₂ O ₅ ac ⁻¹ eck (R) at			Fig sic	gure 2 Earlier silkin leband 54 lb P ₂ O ₅	ig in spring ac ⁻¹ (L) versus

Carman following canola stubble at V4

MicroEssentials SZ STUDY

<u>Year 1 (2015)</u>	
 FIRST phase of the crop sequence (canola and so study site established in spring 2014 (Kelburn Farr	bybeans) m, MB); hybrid) es of fertilizer
<u>Fertilizer Treatments all treatments sidebanded (2" beside and</u> No P check	<u>1" below seed)</u>
27 lb P_2O_5 and 6.7 lb S and 0.67 lb Zn ac ⁻¹ 54 lb P_2O_5 and 13.4 lb S and 1.34 lb Zn ac ⁻¹	MESZn MESZn

INTRODUCTION

	RESIDUE MANAGEMENT				
		MET	HODOLOGY		
	Preceding tillage	e treatments (strip	o tillage and convention		
3) and	Study sites established in fall 2014 (Carman, MB, and Po fall 2015 (Carman, MB, Portage la Prairie, MB);				
la and	Output the second se				
	Corn test crop (I	DKC 26-28 corn h	ybrid)		
ion the	Randomized s preceding resid	olit-block design wi due management p	th 4 replicates taking in practice (strip tillage or o		
<u> seed)</u>	<u>Fertilizer Treatments</u>	<u>s: treatments deep bar</u>	nded in the fall and sideban		
	$27 \text{ lb } \mathbf{P} \cap \mathbf{ac}^{-1}$	Doon Bond	1 - 5" doop		
	51 lb P O ac^{-1}	Deep Band	4 - 5 deep 1 - 5 deep		
-70 7n	$27 \text{ lb P}_{2} \Omega_{2} \text{ ac}^{-1}$	Sideband	2" heside and 1" h		
Zn	54 lb P_2O_5 ac ⁻¹	Sideband	2" beside and 1" b		
	2-3-10				

Year 1	(2015)
anting Date	June 01
arvest Date	October 26
sen-P (ppm)	41
「PA-Zn (ppm)	2.3

Year 2 (2016)

lanting Date	May 13	
arvest Date	October 11	
lsen-P (ppm)	35	
TPA-Zn (ppm)	2.6	

Year 2 (2016)

FIRST phase of the crop sequence (soybeans only) \diamond Study site established in spring 2015 (Kelburn Farm, MB); \diamond Uniform soybean production;

SECOND phase of the crop sequence (DKC 26-28 hybrid) ♦ Randomized block design with 8 replicates; ALL treatments applied in the spring.

Fertilizer Treatments all treatments sidebanded (2" beside and 1" below seed) No P check

27 lb P_2O_5 ac⁻¹

27 lb P_2O_5 and 6.7 lb S ac⁻¹

27 lb P_2O_5 and 6.7 lb S and 0.67 lb Zn ac⁻¹

STUDY

onal tillage)

ortage la Prairie, MB) and

traw was left on the field, application;

nto consideration the conventional tillage);

nded in the spring:

	ΜΔΡ	fall
		fall
	MAP	Tall
elow	MAP	spring
elow	MAP	spring

no P_2O_5 check (R) plots at Carman on July 27, 2015.

> MAP only MAP + AS MESZn

Bars labelled with the same letter are not significantly different as determined by the Tukey-Kramer grouping for treatment least squares means (alpha=0.05). Results from ANOVA are shown for significant effects.

RESULTS and DISCUSSION (Crop Rotation Study)

Although starter P substantially increased early season biomass (85 – 110%), especially in corn following canola and accelerated silking date by 3 – 7 days compared to the control, moisture decrease at harvest and yield response were relatively small at the end of the season.

Although spring side-banded P substantially increased early season biomass (77 – 81%) and accelerated silking date by 3 days compared to the control, at 2 out of the 4 site-years, moisture decrease at harvest and yield response were relatively small at the end of the season.

PRELIMINARY RESULTS