The effect of row spacing and plant population on corn grain yield over two dry years in Manitoba

Navneet Brar and Yvonne Lawley

Department of Plant Science, University of Manitoba, Winnipeg, MB

Introduction

- Studies from the corn belt of North America have shown that corn grown on narrow row widths (15inch to 22-inch) north of 43 °N in North America had a yield advantage over wider (30-inch or more) rows (Lee 2006, Butzen and Paskiewicz 2008).
- Reducing row width can also result in yield reduction due to stress caused by high plant populations density (Pederson and Lauer, 2003).
- In Manitoba, a study conducted by Giesbrecht (1969) showed that row spacing of 20-, 26-, 32- and 37-inches did not have any effect on corn grain yield although yield increased with plant population density upto 30,350 plants /ac.
- Since then, new corn hybrids had been developed for shorter growing seasons as well as hybrids that can withstand high plant population density stress (Tollenaar, 1991).

Objective

To evaluate the effect of row-spacing and \bullet plant population densities on corn grain yield of two hybrids in Manitoba

References

Butzen, S., and Paszkiewicz, S. (2008). Narrowrow corn production: When does it increase yields. Crop Insights, 18(15), 1-5

Giesbrecht, J. (1969). Effect of population and row spacing on the performance of four corn (Zea mays L.) hybrids. Agron. J., 61(3), 439-441.

Lee, C. D. (2006). Reducing row widths to increase yield: Why it does not always work. Crop Management, 5(1). DOI 10.1094/CM-2006-0227-04-RV

Pedersen, P. and Lauer, J. G. (2003). Corn and soybean response to rotation sequence, row spacing, and tillage system. Agron. J., 95(4), 965-971.

Tollenaar, M. 1991. Physiological basis of genetic improvement of maize hybrid in Ontario from 1959 to 1988. Crop Sci. 31:119–124

Table 1: Monthly average air temperature and sum of precipitation at the three sites Values in parentheses represent the percent departure from the 30 year normal (1981-2010)

Table 2: The effect of row spacing and plant population on corn grain yield averaged over two hybrids at three site-years

Month	Air temperature (°C)			Precipitation (mm)			Row spacing	Plant population	Carman -18	Carman -19	Kelburn -18	
	Carman -18	Carman -19	Kelburn -18	Carman -18	Carman -19	Kelburn -18	inch	Plants /ac				
April	5	5 7 7		0	18	0				bu /ac		
	(+2)	(0)	(+3)	(-28)	(-10)	(-27)	22		85.2	61.7	82.8b	
May	10	15	15	48	37	33	30		93.7	64.6	86.5a	
	(+3)	(-2)	(+4)	(-20)	(-31)	(-36)						
June	17	19	19	97	38	69		26000	83.3	60.6	90.4a	
	(+2)	(0)	(+2)	(+6)	(-53)	(-26)		32000	90.9	67.0	89.3a	
July	20	20	20	43	57	69		38000	93.7	59.8	85.5ab	
	(0)	(0)	(0)	(-28)	(-13)	(-11)		45000	87.8	68.8	80.8bc	
Aug	18	19	19	31	62	35		55000	83.4	60.2	77.9c	
	(0)	(-1)	(0)	(-38)	(-7)	(-36)						
Sep	13	11	11	43	151	69	Source c	Source of variation		– – – F-test probability – – – –		
	(-3)	(-1)	(-2)	(-6)	(+102)	(+18)	Roy	w spacing (R)	0 0888	0 5729	< 0001	
Oct	3	3	3	36	46	38	Plant	population (P)	0.8897	0.7050	0.0192	
	(-3)	(-3)	(-2)	(-7)	(+3)	(-5)		R x P	0.6366	0.1214	0.2223	

Figure 1. The actual vs target plant population at three site years (A) Carman-18 (B) Carman-19 and (C) Kelburn-18. The 1:1 dashed line represents the values when actual plant population would be equal to the target plant population. Red stars are the treatment mean of actual plant population

Key Findings

- The growing conditions were very dry in 2018 and 2019 that enabled us an opportunity to evaluate plant population and row spacing factors under stressful conditions (Table 1)
- Growing season precipitation was below normal at all the sites with high precipitation in September at Carman-19 and Kelburn-18 site-years (Table 1).
- The main effect of hybrids, plant populations and row spacings on corn grain yield was significant only at Kelburn-18 but not at Carman18 and Carman19 sites (Table 2). The effect of dry conditions on corn grain yield was likely much larger than the differences between the plant population treatments.
- The range of corn grain yields for the plant population tested was between 83.3-93.7 bu /ac at Carman-18, 59.8-68.8 bu /ac at Carman-19 and 77.9-90.4 bu /ac at Kelburn-18, well below the targeted corn grain yield of 150 bu /ac due to dry years (Table 2)
- At the Kelburn-18 site-year, higher corn yields were obtained when plant population density ranged between 26000-32000 plants /ac and when planted on 30-inch row spacing on this heavy clay soil in a dry year.

Materials and Methods

Site description Field study initiated at two sites on

Total precipitation received during 2018 growing season was 74 % of the normal precipitation for Carman18 and Kelburn18 and was 65 % below normal except in September at Carman19 and Kelburn-18 site-years

Experimental Design

RCBD with 4 replicates

- Treatments

Field Management

• Fertilizers were applied at the time of planting to target corn yield of 150 bu /ac

Sample collection:

Statistical analysis

Canada

- I. sandy loam soil at the University of Manitoba's Ian N Morrison Research farm in 2018 (Carman-18) and 2019 (Carman-19)
- 2. heavy clay soils at Richardson International's Kelburn farm in 2018 (Kelburn-18) and 2019 (Kelburn-19). Kelburn-19 site-year was abandoned due to heavy infestation of cutworms when the corn was at V1 - V2 stage.

Complete factorial design

- Two row spacings:22-inch and 30-inch
- Five plant populations: 26000, 32000, 38000, 44000 and 55,000 seeds /ac
 - Two hybrids :DKC 27-55 (Fixed ear) and DKC 30-07 (Flex ear)

Corn was harvested for grain yield from the central 3rows for 22-inch and central 2 rows for 30-inch with a 2 row corn header on a small plot combine

Data were analysed using linear mixed model implemented in the Proc Glimmix procedure of SAS for each site-year. Treatment factors plant population, row spacing, hybrids and their interactions were considered as fixed factors. Replication was treated as random factors

Acknowledgements

